This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039822 #21 Feb 04 2024 13:14:40 %S A039822 1,1,1,2,2,3,5,8,14,18,24,30,37,43,50,58,66,74,83,93,103,113,124,136, %T A039822 148,160,173,187,201,215,230,246,262,278,295,313,331,349,368,388,408, %U A039822 428,449,471,493,515,538,562,586,610,635,661,687,713,740,768,796,824 %N A039822 Number of different coefficient values in expansion of Product_{i=1..n} (1+q^i). %H A039822 Seiichi Manyama, <a href="/A039822/b039822.txt">Table of n, a(n) for n = 0..1000</a> %F A039822 It appears that for n>11, a(n) = floor((n^2+3n-6)/4). - _Ralf Stephan_, Jun 10 2005 %o A039822 (PARI) a(n) = #Set(Vec(prod(k=1, n, 1+x^k))); \\ _Seiichi Manyama_, Feb 01 2024 %o A039822 (Python) %o A039822 from collections import Counter %o A039822 def A039822(n): %o A039822 c = {0:1} %o A039822 for k in range(1,n+1): %o A039822 d = Counter(c) %o A039822 for j in c: %o A039822 d[j+k] += c[j] %o A039822 c = d %o A039822 return len(set(c.values()))+int(max(c)+1>len(c)) # _Chai Wah Wu_, Feb 04 2024 %Y A039822 Cf. A000009. %K A039822 nonn %O A039822 0,4 %A A039822 _Olivier Gérard_ %E A039822 a(0)=1 prepended by _Seiichi Manyama_, Feb 01 2024