This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039827 #9 Jun 22 2016 21:26:48 %S A039827 1,2,3,6,11,19,26,34,44,54,65,77,90,104,119,135,152,170,189,209,230, %T A039827 252,275,299,324,350,377,405,434,464,495,527,560,594,629,665,702,740, %U A039827 779,819,860,902,945,989,1034,1080,1127,1175,1224,1274 %N A039827 Number of different coefficient values in expansion of Product (1+q^i+q^(2i)), i=1 to n. %H A039827 Ray Chandler, <a href="/A039827/b039827.txt">Table of n, a(n) for n = 1..2500</a> %F A039827 Conjectures from _Chai Wah Wu_, Jun 22 2016: (Start) %F A039827 a(n) = n*(n+1)/2 - 1 for n >= 9. %F A039827 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 11. %F A039827 G.f.: x*(-x^10 + 2*x^9 - x^8 - 2*x^7 + 4*x^6 - x^5 - 2*x^3 + x - 1)/(x - 1)^3. (End) %t A039827 nmax = 50; d = {1}; a1 = {}; %t A039827 Do[ %t A039827 n0s = Table[0, {n}]; %t A039827 d = Join[d, n0s, n0s] + Join[n0s, d, n0s] + Join[n0s, n0s, d]; %t A039827 AppendTo[a1, Length[Union[d]]]; %t A039827 , {n, nmax}]; %t A039827 a1 (* _Ray Chandler_, Mar 26 2014 *) %Y A039827 Cf. A039826. %K A039827 nonn %O A039827 1,2 %A A039827 _Olivier Gérard_