This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039917 #36 Nov 08 2020 05:58:57 %S A039917 1,1,9,2017,21569213,17835527619513,1677123511579177202174, %T A039917 24742950249259362969953039657613, %U A039917 75512002909758683196631913316950684079768626,60752021865167494642984305761115275381534124800396484901989,15991585283632910454908797943467512732011897255095362833558749286619895509557 %N A039917 Number of orderings of 1,2,...,n^2 in an n X n matrix such that each row, each column and both diagonals are increasing. %H A039917 Alois P. Heinz, <a href="/A039917/b039917.txt">Table of n, a(n) for n = 1..14</a> %H A039917 <a href="/index/Y#Young">Index entries for sequences related to Young tableaux.</a> %e A039917 From _Alois P. Heinz_, Jul 23 2012: (Start) %e A039917 a(2) = 1: [1, 3] %e A039917 [2, 4]. %e A039917 a(3) = 9: %e A039917 [1, 4, 7] [1, 3, 7] [1, 2, 7] [1, 4, 6] [1, 3, 6] %e A039917 [2, 5, 8] [2, 5, 8] [3, 5, 8] [2, 5, 8] [2, 5, 8] %e A039917 [3, 6, 9] [4, 6, 9] [4, 6, 9] [3, 7, 9] [4, 7, 9] %e A039917 . %e A039917 [1, 2, 6] [1, 4, 6] [1, 3, 6] [1, 2, 6] %e A039917 [3, 5, 8] [2, 5, 7] [2, 5, 7] [3, 5, 7] %e A039917 [4, 7, 9] [3, 8, 9] [4, 8, 9] [4, 8, 9]. (End) %p A039917 b:= proc(l) option remember; local n; n:= nops(l); `if`({l[]}={0}, %p A039917 1, add(`if`((l[i]-1<>n-i or i=1 or l[i-1]-1<=n-i) and l[i]> %p A039917 `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l)), 0), i=1..n)) %p A039917 end: %p A039917 a:= n-> b([n$n]): %p A039917 seq(a(n), n=1..8); # _Alois P. Heinz_, Jul 23 2012 %t A039917 b[l_List] := b[l] = Module[{n = Length[l]}, If[Union[l] == {0}, 1, Sum[If[ (l[[i]]-1 != n-i || i == 1 || l[[i-1]]-1 <= n-i) && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1]], 0], {i, 1, n}]]]; %t A039917 a[n_] := b[Table[n, {n}]]; %t A039917 Array[a, 8] (* _Jean-François Alcover_, Nov 08 2020, after _Alois P. Heinz_ *) %Y A039917 Cf. A039622, A181191. %K A039917 nonn %O A039917 1,3 %A A039917 _Floor van Lamoen_ %E A039917 One more term from _Jud McCranie_, Aug 09 2001 %E A039917 a(6)-a(13) from _Alois P. Heinz_, Jul 23 2012