This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A039934 #21 Jul 31 2022 20:07:09 %S A039934 3,153,1153,1183,3465,7673,7673,7673,65913,65913,65913,76923,232767, %T A039934 232767,232767,232767,232767,2307767,2307767,2307767,2307767,3076923, %U A039934 6923313,17078903,19507893,56695913,56695913,113322666,113322666 %N A039934 Smallest k for which k, 2*k, ..., n*k all contain the digit 3. %C A039934 a(169) > 7*10^11. - _Giovanni Resta_, Apr 27 2017 %C A039934 a(169) = a(170) = ... = a(188) = 1538461526061, and a(189) > 2*10^12. - _David Radcliffe_, Sep 12 2018 %H A039934 Giovanni Resta, <a href="/A039934/b039934.txt">Table of n, a(n) for n = 1..168</a> %e A039934 a(2)=153 since 153 and 306 both contain a 3, and 153 is the smallest number for which this is the case. %o A039934 (Python) %o A039934 from itertools import count, islice %o A039934 def agen(startn=1, startk=1): %o A039934 n = startn %o A039934 for k in count(startk): %o A039934 ki, nn = k, 0 %o A039934 while "3" in str(ki): ki += k; nn += 1 %o A039934 while n < ki//k: yield k; n += 1 %o A039934 print(list(islice(agen(), 22))) # _Michael S. Branicky_, Jul 31 2022 %Y A039934 Cf. A039932, A039933, A039935, A039936, A039937, A039938, A039939, A039940. %K A039934 base,nonn %O A039934 1,1 %A A039934 _Erich Friedman_ %E A039934 More terms from _Patrick De Geest_, Oct 15 1999