A039961 Triangle of coefficients in a Fibonacci-like sequence of polynomials.
1, 1, 1, -1, 1, -1, -1, 1, -1, -2, 1, 1, -1, -3, 2, 1, 1, -1, -4, 3, 3, -1, 1, -1, -5, 4, 6, -3, -1, 1, -1, -6, 5, 10, -6, -4, 1, 1, -1, -7, 6, 15, -10, -10, 4, 1, 1, -1, -8, 7, 21, -15, -20, 10, 5, -1, 1, -1, -9, 8, 28, -21, -35, 20, 15, -5, -1, 1, -1, -10
Offset: 1
Examples
Triangle starts: 1 1 1 -1 1 -1 -1 1 -1 -2 1 1 -1 -3 2 1 ...
References
- A. F. Horadam, R. P. Loh and A. G. Shannon, Divisibility properties of some Fibonacci-type sequences, pp. 55-64 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
Formula
q_{n+2}(x) = x*q_{n+1}(x)-q_n(x), q_1(x) = q_2(x) = 1.
Extensions
More terms from Philippe Deléham, Feb 27 2014
Comments