A039964 Motzkin numbers A001006 read mod 3.
1, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 0..10000
- Rob Burns, Asymptotic density of Motzkin numbers modulo small primes, arXiv:1611.04910 [math.NT], 2016.
- Anders Hyllengren, Letter to N. J. A. Sloane, Oct 04 1985.
- David Kohel, San Ling and Chaoping Xing, Explicit Sequence Expansions, in: C. Ding, T. Helleseth and H. Niederreiter (eds.), Sequences and their Applications, Proceedings of SETA'98 (Singapore, 1998), Discrete Mathematics and Theoretical Computer Science, 1999, pp. 308-317; alternative link.
Crossrefs
Programs
-
Mathematica
b = DifferenceRoot[Function[{b, n}, {3 (n + 1) b[n] + (2 n + 5) b[n + 1] == (n + 4) b[n + 2], b[0] == 1, b[1] == 1}]]; a[n_] := Mod[b[n], 3]; Table[a[n], {n, 0, 104}] (* Jean-François Alcover, Feb 26 2019 *)
-
PARI
a001006(n) = polcoeff((1-x-sqrt((1-x)^2-4*x^2+x^3*O(x^n)))/(2*x^2), n); vector(200, n, n--; a001006(n) % 3) \\ Altug Alkan, Oct 23 2015
Formula
a(n) = A001006(n) mod 3. - Christian G. Bower, Jun 12 2005
Extensions
More terms from Christian G. Bower, Jun 12 2005
Offset adapted by Altug Alkan, Oct 23 2015
Comments