This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040007 #43 Aug 22 2025 16:00:45 %S A040007 3,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3, %T A040007 6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3,6,3, %U A040007 6,3,6,3,6,3,6,3,6,3,6,3 %N A040007 Continued fraction for sqrt(11). %C A040007 Eventual period is (3,6). - _Zak Seidov_, Mar 05 2011 %C A040007 Decimal expansion of 37/110. - _R. J. Mathar_, Aug 22 2025 %D A040007 Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, ยง4.4 Powers and Roots, p. 144. %D A040007 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276. %H A040007 Harry J. Smith, <a href="/A040007/b040007.txt">Table of n, a(n) for n = 0..20000</a> %H A040007 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A040007 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A040007 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A040007 From _Stefano Spezia_, Jan 18 2025: (Start) %F A040007 G.f.: 3*(1 + x + x^2)/(1 - x^2). %F A040007 E.g.f.: 3*(2*cosh(x) + sinh(x) - 1). (End) %e A040007 3.316624790355399849114932736... = 3 + 1/(3 + 1/(6 + 1/(3 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 02 2009 %p A040007 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'): %t A040007 ContinuedFraction[Sqrt[11],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 05 2011 *) %t A040007 PadRight[{3},120,{6,3}] (* _Harvey P. Dale_, Jan 18 2025 *) %o A040007 (PARI) { allocatemem(932245000); default(realprecision, 27000); x=contfrac(sqrt(11)); for (n=0, 20000, write("b040007.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 02 2009 %Y A040007 Cf. A010468, A010704. %K A040007 nonn,cofr,easy,changed %O A040007 0,1 %A A040007 _N. J. A. Sloane_