This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040011 #34 Aug 22 2025 16:04:56 %S A040011 3,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1, %T A040011 6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1,6,1, %U A040011 6,1,6,1,6,1,6,1,6,1,6,1,6 %N A040011 Continued fraction for sqrt(15). %C A040011 Decimal expansion of 313/990. - _R. J. Mathar_, Aug 22 2025 %D A040011 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276. %H A040011 Harry J. Smith, <a href="/A040011/b040011.txt">Table of n, a(n) for n = 0..20000</a> %H A040011 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A040011 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A040011 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A040011 From _Amiram Eldar_, Nov 12 2023: (Start) %F A040011 Multiplicative with a(2^e) = 6, and a(p^e) = 1 for an odd prime p. %F A040011 Dirichlet g.f.: zeta(s) * (1 + 5/2^s). (End) %F A040011 G.f.: (3 + x + 3*x^2)/(1 - x^2). - _Stefano Spezia_, Jul 26 2025 %e A040011 3.872983346207416885179265399... = 3 + 1/(1 + 1/(6 + 1/(1 + 1/(6 + ...)))). - _Harry J. Smith_, Jun 03 2009 %p A040011 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'): %t A040011 ContinuedFraction[Sqrt[15],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 05 2011 *) %t A040011 PadRight[{3},120,{6,1}] (* _Harvey P. Dale_, Apr 14 2020 *) %o A040011 (PARI) { allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(15)); for (n=0, 20000, write("b040011.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 03 2009 %Y A040011 Cf. A010472 (decimal expansion). A010687. %K A040011 nonn,cofr,easy,mult,changed %O A040011 0,1 %A A040011 _N. J. A. Sloane_