This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040029 #39 Aug 25 2025 11:10:40 %S A040029 5,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1, %T A040029 10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10,1,10, %U A040029 1,10,1,10,1,10,1,10,1,10,1 %N A040029 Continued fraction for sqrt(35). %D A040029 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, pages 275-276. %H A040029 Harry J. Smith, <a href="/A040029/b040029.txt">Table of n, a(n) for n = 0..20000</a> %H A040029 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A040029 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A040029 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A040029 From _Amiram Eldar_, Nov 12 2023: (Start) %F A040029 Multiplicative with a(2^e) = 10, and a(p^e) = 1 for an odd prime p. %F A040029 Dirichlet g.f.: zeta(s) * (1 + 9/2^s). (End) %F A040029 G.f.: (5 + x + 5*x^2)/(1 - x^2). - _Stefano Spezia_, Jul 27 2025 %e A040029 5.9160797830996160425673282... = 5 + 1/(1 + 1/(10 + 1/(1 + 1/(10 + ...)))). - _Harry J. Smith_, Jun 04 2009 %p A040029 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'): %t A040029 ContinuedFraction[Sqrt[35],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 06 2011 *) %t A040029 PadRight[{5},120,{10,1}] (* _Harvey P. Dale_, Mar 23 2021 *) %o A040029 (PARI) { allocatemem(932245000); default(realprecision, 22000); x=contfrac(sqrt(35)); for (n=0, 20000, write("b040029.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 04 2009 %Y A040029 Cf. A010490 (decimal expansion), A010691. %K A040029 nonn,cofr,easy,mult,changed %O A040029 0,1 %A A040029 _N. J. A. Sloane_