cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040041 Continued fraction for sqrt(48).

This page as a plain text file.
%I A040041 #30 Jul 27 2025 08:06:50
%S A040041 6,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,
%T A040041 12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,1,12,
%U A040041 1,12,1,12,1,12,1,12,1,12,1
%N A040041 Continued fraction for sqrt(48).
%D A040041 James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.
%H A040041 Harry J. Smith, <a href="/A040041/b040041.txt">Table of n, a(n) for n = 0..20000</a>
%H A040041 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H A040041 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A040041 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F A040041 From _Amiram Eldar_, Nov 12 2023: (Start)
%F A040041 Multiplicative with a(2^e) = 12, and a(p^e) = 1 for an odd prime p.
%F A040041 Dirichlet g.f.: zeta(s) * (1 + 11/2^s). (End)
%F A040041 G.f.: (6 + x + 6*x^2)/(1 - x^2). - _Stefano Spezia_, Jul 27 2025
%e A040041 6.9282032302755091741097853... = 6 + 1/(1 + 1/(12 + 1/(1 + 1/(12 + ...)))). - _Harry J. Smith_, Jun 06 2009
%p A040041 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
%t A040041 ContinuedFraction[Sqrt[48],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 07 2011 *)
%o A040041 (PARI) { allocatemem(932245000); default(realprecision, 24000); x=contfrac(sqrt(48)); for (n=0, 20000, write("b040041.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 06 2009
%Y A040041 Cf. A010502 (decimal expansion).
%K A040041 nonn,cofr,easy,mult
%O A040041 0,1
%A A040041 _N. J. A. Sloane_