cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040047 Primes p such that x^3 = 6 has no solution mod p.

This page as a plain text file.
%I A040047 #26 Jul 08 2025 22:43:36
%S A040047 13,19,31,43,61,67,73,79,97,103,109,127,151,157,193,199,211,223,229,
%T A040047 271,277,283,331,367,373,397,433,457,463,487,523,547,577,601,613,619,
%U A040047 661,673,691,709,733,739,757,769
%N A040047 Primes p such that x^3 = 6 has no solution mod p.
%C A040047 Complement of A040046 relative to A000040. - _Vincenzo Librandi_, Sep 17 2012
%H A040047 Vincenzo Librandi, <a href="/A040047/b040047.txt">Table of n, a(n) for n = 1..1000</a>
%H A040047 Benjamin Braun, Brian Davis, <a href="https://arxiv.org/abs/1901.01417">Antichain Simplices</a>, arXiv:1901.01417 [math.CO], 2019.
%H A040047 Stepan Kochemazov, Oleg Zaikin, Eduard Vatutin, Alexey Belyshev, <a href="https://www.emis.de/journals/JIS/VOL23/Zaikin/zaikin3.html">Enumerating Diagonal Latin Squares of Order Up to 9</a>, J. Int. Seq., Vol. 23 (2020), Article 20.1.2.
%t A040047 ok[p_]:= Reduce[Mod[x^3 - 6, p] == 0, x, Integers] == False; Select[Prime[Range[200]], ok] (* _Vincenzo Librandi_, Sep 17 2012 *)
%o A040047 (Magma) [p: p in PrimesUpTo(1000) | not exists{x : x in ResidueClassRing(p) | x^3 eq 6} ]; // _Vincenzo Librandi_, Sep 17 2012
%K A040047 nonn,easy
%O A040047 1,1
%A A040047 _N. J. A. Sloane_