This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040052 #37 Oct 02 2024 08:35:01 %S A040052 7,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2, %T A040052 1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14,1,2,1,14, %U A040052 1,2,1,14,1,2,1,14,1,2,1,14 %N A040052 Continued fraction for sqrt(60). %H A040052 Harry J. Smith, <a href="/A040052/b040052.txt">Table of n, a(n) for n = 0..20000</a> %H A040052 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A040052 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A040052 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,1). %F A040052 From _Bruno Berselli_, Mar 07 2011: (Start) %F A040052 G.f.: (7 + x + 2*x^2 + x^3 + 7*x^4)/(1-x^4). %F A040052 a(n) = (6*(-i)^n + 6*i^n + 7*(-1)^n + 9)/2 - 7*A000007(n), where i is the imaginary unit. (End) %F A040052 From _Amiram Eldar_, Nov 13 2023: (Start) %F A040052 Multiplicative with a(2) = 2, a(2^e) = 14 for e >= 2, and a(p^e) = 1 for an odd prime p. %F A040052 Dirichlet g.f.: zeta(s) * (1 + 1/2^s + 3/4^(s-1)). (End) %e A040052 7.74596669241483377035853079... = 7 + 1/(1 + 1/(2 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009 %p A040052 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'): %t A040052 ContinuedFraction[Sqrt[60],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 07 2011 *) %t A040052 PadRight[{7},120,{14,1,2,1}] (* _Harvey P. Dale_, Aug 07 2019 *) %o A040052 (PARI) { allocatemem(932245000); default(realprecision, 19000); x=contfrac(sqrt(60)); for (n=0, 20000, write("b040052.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 07 2009 %o A040052 (Magma) [7] cat &cat[ [1, 2, 1, 14]: n in [1..18]]; // _Bruno Berselli_, Mar 07 2011 %Y A040052 Cf. A000007, A010513 (decimal expansion), A248285 (Egyptian fractions). %K A040052 nonn,cofr,easy,mult %O A040052 0,1 %A A040052 _N. J. A. Sloane_