cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040055 Continued fraction for sqrt(63).

This page as a plain text file.
%I A040055 #30 Nov 13 2023 07:07:09
%S A040055 7,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,
%T A040055 14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,1,14,
%U A040055 1,14,1,14,1,14,1,14,1,14,1
%N A040055 Continued fraction for sqrt(63).
%H A040055 Harry J. Smith, <a href="/A040055/b040055.txt">Table of n, a(n) for n = 0..20000</a>
%H A040055 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>.
%H A040055 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A040055 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F A040055 From _Amiram Eldar_, Nov 13 2023: (Start)
%F A040055 Multiplicative with a(2^e) = 14, and a(p^e) = 1 for p >= 5.
%F A040055 Dirichlet g.f.: zeta(s) * (1 + 13/2^s). (End)
%e A040055 7.9372539331937717715048472... = 7 + 1/(1 + 1/(14 + 1/(1 + 1/(14 + ...)))). - _Harry J. Smith_, Jun 07 2009
%p A040055 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
%t A040055 ContinuedFraction[Sqrt[63], 300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 08 2011 *)
%o A040055 (PARI) { allocatemem(932245000); default(realprecision, 25000); x=contfrac(sqrt(63)); for (n=0, 20000, write("b040055.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 07 2009
%Y A040055 Cf. A010516 (decimal expansion), A020820 (decimal expansion of 1/sqrt(63)).
%K A040055 nonn,cofr,easy,mult
%O A040055 0,1
%A A040055 _N. J. A. Sloane_