This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040071 #29 Nov 13 2023 07:11:31 %S A040071 8,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1, %T A040071 16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16,1,16, %U A040071 1,16,1,16,1,16,1,16,1,16,1 %N A040071 Continued fraction for sqrt(80). %H A040071 Harry J. Smith, <a href="/A040071/b040071.txt">Table of n, a(n) for n = 0..20000</a> %H A040071 G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>. %H A040071 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A040071 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A040071 a(n) = 4^(1+(-1)^n) for n>0, a(0)=8. - _Bruno Berselli_, Dec 29 2015 %F A040071 From _Amiram Eldar_, Nov 13 2023: (Start) %F A040071 Multiplicative with a(2^e) = 16, and a(p^e) = 1 for an odd prime p. %F A040071 Dirichlet g.f.: zeta(s) * (1 + 15/2^s). (End) %e A040071 8.9442719099991587856366946... = 8 + 1/(1 + 1/(16 + 1/(1 + 1/(16 + ...)))). - _Harry J. Smith_, Jun 09 2009 %p A040071 Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'): %t A040071 ContinuedFraction[Sqrt[80],300] (* _Vladimir Joseph Stephan Orlovsky_, Mar 09 2011 *) %t A040071 PadRight[{8},120,{16,1}] (* _Harvey P. Dale_, Apr 16 2022 *) %o A040071 (PARI) { allocatemem(932245000); default(realprecision, 26000); x=contfrac(sqrt(80)); for (n=0, 20000, write("b040071.txt", n, " ", x[n+1])); } \\ _Harry J. Smith_, Jun 09 2009 %Y A040071 Cf. A010532 (decimal expansion). %K A040071 nonn,cofr,easy,mult %O A040071 0,1 %A A040071 _N. J. A. Sloane_