cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040082 Number of inequivalent Latin squares (or isotopy classes of Latin squares) of order n.

This page as a plain text file.
%I A040082 M0392 N0150 #37 Feb 16 2025 08:32:38
%S A040082 1,1,1,2,2,22,564,1676267,115618721533,208904371354363006,
%T A040082 12216177315369229261482540
%N A040082 Number of inequivalent Latin squares (or isotopy classes of Latin squares) of order n.
%C A040082 Here "isotopy class" means an equivalence class of Latin squares under the operations of row permutation, column permutation and symbol permutation. [Brendan McKay]
%D A040082 R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. 6th ed., Hafner, NY, 1963, p. 22.
%D A040082 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210.
%D A040082 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D A040082 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H A040082 J. W. Brown, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80053-5">Enumeration of Latin squares with application to order 8</a>, J. Combin. Theory, 5 (1968), 177-184. [a(7) and a(8) appear to be given incorrectly. - _N. J. A. Sloane_, Jan 23 2020]
%H A040082 A. Hulpke, Petteri Kaski and Patric R. J. Östergård, <a href="http://dx.doi.org/10.1090/S0025-5718-2010-02420-2">The number of Latin squares of order 11</a>, Math. Comp. 80 (2011) 1197-1219.
%H A040082 G. Kolesova, C. W. H. Lam and L. Thiel, <a href="https://doi.org/10.1016/0097-3165(90)90015-O">On the number of 8x8 Latin squares</a>, J. Combin. Theory,(A) 54 (1990) 143-148.
%H A040082 Brendan D. McKay, <a href="http://users.cecs.anu.edu.au/~bdm/data/latin.html">Latin Squares</a> (has list of all such squares)
%H A040082 Brendan D. McKay, A. Meynert and W. Myrvold, <a href="http://users.cecs.anu.edu.au/~bdm/papers/ls_final.pdf">Small Latin Squares, Quasigroups and Loops</a>, J. Combin. Designs 15 (2007), no. 2, 98-119.
%H A040082 Brendan D. McKay and E. Rogoyski, <a href="http://www.combinatorics.org/Volume_2/volume2.html#N3">Latin squares of order ten</a>, Electron. J. Combinatorics, 2 (1995) #N3.
%H A040082 Eduard Vatutin, Alexey Belyshev, Stepan Kochemazov, Oleg Zaikin, Natalia Nikitina, <a href="http://russianscdays.org/files/pdf18/933.pdf">Enumeration of Isotopy Classes of Diagonal Latin Squares of Small Order Using Volunteer Computing</a>, Russian Supercomputing Days (Суперкомпьютерные дни в России), 2018.
%H A040082 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LatinSquare.html">Latin Square</a>
%H A040082 M. B. Wells, <a href="http://dx.doi.org/10.1016/0097-3165(90)90015-O">The number of Latin squares of order 8</a>, J. Combin. Theory, 3 (1967), 98-99.
%H A040082 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>
%Y A040082 Cf. A002860, A003090, A000315. See A000528 for another version.
%K A040082 nonn,hard,nice
%O A040082 1,4
%A A040082 _N. J. A. Sloane_
%E A040082 7 X 7 and 8 X 8 results confirmed by _Brendan McKay_
%E A040082 Beware: erroneous versions of this sequence can be found in the literature!
%E A040082 a(9)-a(10) (from the McKay-Meynert-Myrvold article) from _Richard Bean_, Feb 17 2004
%E A040082 a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009