This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040082 M0392 N0150 #37 Feb 16 2025 08:32:38 %S A040082 1,1,1,2,2,22,564,1676267,115618721533,208904371354363006, %T A040082 12216177315369229261482540 %N A040082 Number of inequivalent Latin squares (or isotopy classes of Latin squares) of order n. %C A040082 Here "isotopy class" means an equivalence class of Latin squares under the operations of row permutation, column permutation and symbol permutation. [Brendan McKay] %D A040082 R. A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural and Medical Research. 6th ed., Hafner, NY, 1963, p. 22. %D A040082 J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 210. %D A040082 N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). %D A040082 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A040082 J. W. Brown, <a href="http://dx.doi.org/10.1016/S0021-9800(68)80053-5">Enumeration of Latin squares with application to order 8</a>, J. Combin. Theory, 5 (1968), 177-184. [a(7) and a(8) appear to be given incorrectly. - _N. J. A. Sloane_, Jan 23 2020] %H A040082 A. Hulpke, Petteri Kaski and Patric R. J. Östergård, <a href="http://dx.doi.org/10.1090/S0025-5718-2010-02420-2">The number of Latin squares of order 11</a>, Math. Comp. 80 (2011) 1197-1219. %H A040082 G. Kolesova, C. W. H. Lam and L. Thiel, <a href="https://doi.org/10.1016/0097-3165(90)90015-O">On the number of 8x8 Latin squares</a>, J. Combin. Theory,(A) 54 (1990) 143-148. %H A040082 Brendan D. McKay, <a href="http://users.cecs.anu.edu.au/~bdm/data/latin.html">Latin Squares</a> (has list of all such squares) %H A040082 Brendan D. McKay, A. Meynert and W. Myrvold, <a href="http://users.cecs.anu.edu.au/~bdm/papers/ls_final.pdf">Small Latin Squares, Quasigroups and Loops</a>, J. Combin. Designs 15 (2007), no. 2, 98-119. %H A040082 Brendan D. McKay and E. Rogoyski, <a href="http://www.combinatorics.org/Volume_2/volume2.html#N3">Latin squares of order ten</a>, Electron. J. Combinatorics, 2 (1995) #N3. %H A040082 Eduard Vatutin, Alexey Belyshev, Stepan Kochemazov, Oleg Zaikin, Natalia Nikitina, <a href="http://russianscdays.org/files/pdf18/933.pdf">Enumeration of Isotopy Classes of Diagonal Latin Squares of Small Order Using Volunteer Computing</a>, Russian Supercomputing Days (Суперкомпьютерные дни в России), 2018. %H A040082 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LatinSquare.html">Latin Square</a> %H A040082 M. B. Wells, <a href="http://dx.doi.org/10.1016/0097-3165(90)90015-O">The number of Latin squares of order 8</a>, J. Combin. Theory, 3 (1967), 98-99. %H A040082 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a> %Y A040082 Cf. A002860, A003090, A000315. See A000528 for another version. %K A040082 nonn,hard,nice %O A040082 1,4 %A A040082 _N. J. A. Sloane_ %E A040082 7 X 7 and 8 X 8 results confirmed by _Brendan McKay_ %E A040082 Beware: erroneous versions of this sequence can be found in the literature! %E A040082 a(9)-a(10) (from the McKay-Meynert-Myrvold article) from _Richard Bean_, Feb 17 2004 %E A040082 a(11) from Petteri Kaski (petteri.kaski(AT)cs.helsinki.fi), Sep 18 2009