cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040098 Primes p such that x^4 = 2 has a solution mod p.

This page as a plain text file.
%I A040098 #27 Feb 21 2022 01:05:48
%S A040098 2,7,23,31,47,71,73,79,89,103,113,127,151,167,191,199,223,233,239,257,
%T A040098 263,271,281,311,337,353,359,367,383,431,439,463,479,487,503,577,593,
%U A040098 599,601,607,617,631,647,719,727,743,751,823,839,863,881,887,911,919
%N A040098 Primes p such that x^4 = 2 has a solution mod p.
%C A040098 For a prime p congruent to 1 mod 8, 2 is a biquadratic residue mod p if and only if there are integers x,y such that x^2 + 64*y^2 = p. 2 is also a biquadratic residue mod 2 and mod p for any prime p congruent to 7 mod 8 and for no other primes. - Fred W. Helenius (fredh(AT)ix.netcom.com), Dec 30 2004
%C A040098 Complement of A040100 relative to A000040. - _Vincenzo Librandi_, Sep 13 2012
%H A040098 T. D. Noe, <a href="/A040098/b040098.txt">Table of n, a(n) for n = 1..1000</a>
%H A040098 Franz Lemmermeyer, <a href="http://www.rzuser.uni-heidelberg.de/~hb3/recbib.html">Bibliography on Reciprocity Laws</a>
%H A040098 <a href="/index/Pri#smp">Index entries for related sequences</a>
%t A040098 ok[p_] := Reduce[ Mod[x^4 - 2, p] == 0, x, Integers] =!= False; Select[ Prime[ Range[200]], ok] (* _Jean-François Alcover_, Dec 14 2011 *)
%o A040098 (Magma) [ p: p in PrimesUpTo(919) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 2} ]; // _Klaus Brockhaus_, Dec 02 2008
%o A040098 (PARI) forprime(p=2,2000,if([]~!=polrootsmod(x^4-2,p),print1(p,", ")));print(); \\ _Joerg Arndt_, Jul 27 2011
%Y A040098 Cf. A000040, A001132, A040028, A040100, A045315.
%Y A040098 For primes p such that x^m == 2 mod p has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ...
%K A040098 nonn,nice,easy
%O A040098 1,1
%A A040098 _N. J. A. Sloane_