This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040101 #14 Jul 08 2025 22:47:23 %S A040101 2,3,11,13,23,47,59,71,83,107,109,131,167,179,181,191,193,227,229,239, %T A040101 251,263,277,311,313,347,359,383,419,421,431,433,443,467,479,491,503, %U A040101 541,563,577,587,599,601,647,659 %N A040101 Primes p such that x^4 = 3 has a solution mod p. %C A040101 Union of 2, 3, A068231 (primes congruent to 11 modulo 12), primes p == 1 (mod 4) such that 3^((p-1)/4) == 1 (mod p). - _Jianing Song_, Jun 22 2025 %H A040101 Vincenzo Librandi, <a href="/A040101/b040101.txt">Table of n, a(n) for n = 1..1000</a> %t A040101 ok [p_]:=Reduce[Mod[x^4- 3, p] == 0, x, Integers] =!= False; Select[Prime[Range[200]], ok] (* _Vincenzo Librandi_, Sep 11 2012 *) %o A040101 (Magma) [p: p in PrimesUpTo(800) | exists(t){x : x in ResidueClassRing(p) | x^4 eq 3}]; // _Vincenzo Librandi_, Sep 11 2012 %o A040101 (PARI) isA040101(p) = isprime(p) && (p==2 || p==3 || p%12==11 || (p%4==1 && Mod(3, p)^((p-1)/4) == 1)) \\ _Jianing Song_, Jun 22 2025 %Y A040101 A subsequence of A038874. %Y A040101 A068231 < A385220 < A045317 < this sequence < A097933 (ignoring terms 2, 3), where Ax < Ay means that Ax is a subsequence of Ay. %K A040101 nonn,easy %O A040101 1,1 %A A040101 _N. J. A. Sloane_