cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040305 Continued fraction for sqrt(323).

This page as a plain text file.
%I A040305 #19 Dec 10 2023 01:49:19
%S A040305 17,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,
%T A040305 1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,
%U A040305 34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34,1,34
%N A040305 Continued fraction for sqrt(323).
%H A040305 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A040305 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F A040305 From _Amiram Eldar_, Dec 10 2023: (Start)
%F A040305 Multiplicative with a(2^e) = 34, and a(p^e) = 1 for an odd prime p.
%F A040305 Dirichlet g.f.: zeta(s) * (1 + 33/2^s). (End)
%p A040305 with(numtheory): Digits := 300: convert(evalf(sqrt(323)),confrac);
%t A040305 ContinuedFraction[Sqrt[323],75] (* _Harvey P. Dale_, May 12 2011 *)
%K A040305 nonn,cofr,easy,mult
%O A040305 0,1
%A A040305 _N. J. A. Sloane_