This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040341 #22 Dec 20 2023 08:06:16 %S A040341 18,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36, %T A040341 1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1, %U A040341 36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36 %N A040341 Continued fraction for sqrt(360). %H A040341 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>. %H A040341 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1). %F A040341 a(n) = a(n-2), for n >= 3. - _Wesley Ivan Hurt_, Apr 16 2023 %F A040341 From _Amiram Eldar_, Dec 20 2023: (Start) %F A040341 Multiplicative with a(2^e) = 36, and a(p^e) = 1 for an odd prime p. %F A040341 Dirichlet g.f.: zeta(s) * (1 + 35/2^s). (End) %p A040341 with(numtheory): Digits := 300: convert(evalf(sqrt(360)),confrac); %t A040341 ContinuedFraction[Sqrt[360],120] (* or *) PadRight[{18},120,{36,1}] (* _Harvey P. Dale_, Jul 04 2021 *) %K A040341 nonn,cofr,easy,mult %O A040341 0,1 %A A040341 _N. J. A. Sloane_