cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040341 Continued fraction for sqrt(360).

This page as a plain text file.
%I A040341 #22 Dec 20 2023 08:06:16
%S A040341 18,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,
%T A040341 1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,
%U A040341 36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36,1,36
%N A040341 Continued fraction for sqrt(360).
%H A040341 <a href="/index/Con#confC">Index entries for continued fractions for constants</a>.
%H A040341 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,1).
%F A040341 a(n) = a(n-2), for n >= 3. - _Wesley Ivan Hurt_, Apr 16 2023
%F A040341 From _Amiram Eldar_, Dec 20 2023: (Start)
%F A040341 Multiplicative with a(2^e) = 36, and a(p^e) = 1 for an odd prime p.
%F A040341 Dirichlet g.f.: zeta(s) * (1 + 35/2^s). (End)
%p A040341 with(numtheory): Digits := 300: convert(evalf(sqrt(360)),confrac);
%t A040341 ContinuedFraction[Sqrt[360],120] (* or *) PadRight[{18},120,{36,1}] (* _Harvey P. Dale_, Jul 04 2021 *)
%K A040341 nonn,cofr,easy,mult
%O A040341 0,1
%A A040341 _N. J. A. Sloane_