This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040930 #43 Feb 20 2024 18:37:49 %S A040930 31,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62, %T A040930 62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62, %U A040930 62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62,62 %N A040930 Continued fraction for sqrt(962). %H A040930 <a href="/index/Con#confC">Index entries for continued fractions for constants</a> %H A040930 <a href="/index/Con#constant">Index entries for eventually constant sequences</a>. %H A040930 <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1). %F A040930 G.f.: 31*(1+x)/(1-x). - _Colin Barker_, Aug 11 2012 %F A040930 From _Elmo R. Oliveira_, Feb 16 2024: (Start) %F A040930 a(n) = 62 for n >= 1. %F A040930 E.g.f.: 62*exp(x) - 31. %F A040930 a(n) = 31*A040000(n). (End) %e A040930 31 + 1/(62 + 1/(62 + 1/(62 + 1/(62 + ...)))) = sqrt(962). %p A040930 with(numtheory): Digits := 300: convert(evalf(sqrt(962)),confrac); %t A040930 PadRight[{31},100,62] (* _Harvey P. Dale_, Sep 18 2012 *) %Y A040930 Cf. A042860/A042861 (convergents). %Y A040930 Continued fraction for sqrt(a^2+1) = (a, 2a, 2a, 2a....): A040000 (contfrac(sqrt(2)) = (1,2,2,...)), A040002, A040006, A040012, A040020, A040030, A040042, A040056, A040072, A040090, A040110 (contfrac(sqrt(122)) = (11,22,22,...)), A040132, A040156, A040182, A040210, A040240, A040272, A040306, A040342, A040380, A040420 (contfrac(sqrt(442)) = (21,42,42,...)), A040462, A040506, A040552, A040600, A040650, A040702, A040756, A040812, A040870 (contfrac(sqrt(901)) = (30,60,60,...)). %K A040930 nonn,cofr,easy %O A040930 0,1 %A A040930 _N. J. A. Sloane_