This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A040992 #20 Jun 19 2023 04:23:48 %S A040992 2,17,23,31,41,47,71,89,113,127,137,167,191,223,233,239,257,263,281, %T A040992 311,353,359,383,401,431,433,439,449,457,479,503,521,569,593,599,601, %U A040992 617,641,647,719,727,743,761,809,839,857,863,881,887,911,919,929,953 %N A040992 Primes p such that x^6 = 2 has a solution mod p. %C A040992 Complement of A040993 relative to A000040. - _Vincenzo Librandi_, Sep 13 2012 %H A040992 T. D. Noe, <a href="/A040992/b040992.txt">Table of n, a(n) for n = 1..1000</a> %H A040992 <a href="/index/Pri#smp">Index entries for related sequences</a> %t A040992 ok[p_]:= Reduce[Mod[x^6- 2, p] == 0, x, Integers]=!=False; Select[Prime[Range[200]], ok] (* _Vincenzo Librandi_, Sep 13 2012 *) %o A040992 (PARI) forprime(p=2,2000,if([]~!=polrootsmod(x^6-2,p),print1(p,", ")));print(); %o A040992 /* _Joerg Arndt_, Jul 27 2011 */ %o A040992 (Magma) [p: p in PrimesUpTo(1000) | exists(t){x : x in ResidueClassRing(p) | x^6 eq 2}]; // _Vincenzo Librandi_, Sep 13 2012 %Y A040992 Cf. A000040, A040993. %Y A040992 For primes p such that x^m == 2 (mod p) has a solution for m = 2,3,4,5,6,7,... see A038873, A040028, A040098, A040159, A040992, A042966, ... %K A040992 nonn,easy %O A040992 1,1 %A A040992 _N. J. A. Sloane_