cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041016 Numerators of continued fraction convergents to sqrt(12).

This page as a plain text file.
%I A041016 #30 Jun 02 2016 12:31:37
%S A041016 3,7,45,97,627,1351,8733,18817,121635,262087,1694157,3650401,23596563,
%T A041016 50843527,328657725,708158977,4577611587,9863382151,63757904493,
%U A041016 137379191137,888033051315,1913445293767,12368704813917
%N A041016 Numerators of continued fraction convergents to sqrt(12).
%H A041016 Vincenzo Librandi, <a href="/A041016/b041016.txt">Table of n, a(n) for n = 0..200</a>
%H A041016 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,14,0,-1).
%F A041016 G.f.: (3+7*x+3*x^2-x^3)/(1-14*x^2+x^4).
%F A041016 From _Gerry Martens_, Jul 11 2015: (Start)
%F A041016 Interspersion of 2 sequences [a0(n),a1(n)] for n>0:
%F A041016 a0(n) = (-((7-4*sqrt(3))^n*(3+2*sqrt(3)))+(-3+2*sqrt(3))*(7+4*sqrt(3))^n)/2.
%F A041016 a1(n) = ((7-4*sqrt(3))^n+(7+4*sqrt(3))^n)/2. (End)
%t A041016 Table[Numerator[FromContinuedFraction[ContinuedFraction[Sqrt[12],n]]],{n,1,50}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 16 2011*)
%t A041016 Numerator[Convergents[Sqrt[12], 30]] (* _Vincenzo Librandi_, Oct 28 2013 *)
%t A041016 a0[n_] := (-((7-4*Sqrt[3])^n*(3+2*Sqrt[3]))+(-3+2*Sqrt[3])*(7+4*Sqrt[3])^n)/2 //Simplify
%t A041016 a1[n_] := ((7-4*Sqrt[3])^n+(7+4*Sqrt[3])^n)/2 // Simplify
%t A041016 Flatten[MapIndexed[{a0[#], a1[#]} &,Range[20]]] (* _Gerry Martens_, Jul 11 2015 *)
%t A041016 LinearRecurrence[{0,14,0,-1},{3,7,45,97},30] (* _Harvey P. Dale_, Jun 02 2016 *)
%Y A041016 Cf. A010469, A041017.
%K A041016 nonn,cofr,frac,easy
%O A041016 0,1
%A A041016 _N. J. A. Sloane_