cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041035 Denominators of continued fraction convergents to sqrt(22).

This page as a plain text file.
%I A041035 #31 Dec 07 2018 19:36:23
%S A041035 1,1,3,13,29,42,365,407,1179,5123,11425,16548,143809,160357,464523,
%T A041035 2018449,4501421,6519870,56660381,63180251,183020883,795263783,
%U A041035 1773548449,2568812232,22324046305,24892858537
%N A041035 Denominators of continued fraction convergents to sqrt(22).
%H A041035 Vincenzo Librandi, <a href="/A041035/b041035.txt">Table of n, a(n) for n = 0..200</a>
%H A041035 <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,394,0,0,0,0,0,-1).
%F A041035 From _Colin Barker_, Jul 16 2012: (Start)
%F A041035 a(n) = 394*a(n-6) - a(n-12).
%F A041035 G.f.: -(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1). (End)
%t A041035 Table[Denominator[FromContinuedFraction[ContinuedFraction[Sqrt[22],n]]],{n,1,50}] (* _Vladimir Joseph Stephan Orlovsky_, Mar 17 2011 *)
%t A041035 LinearRecurrence[{0,0,0,0,0,394,0,0,0,0,0,-1 }, {1, 1, 3, 13, 29, 42, 365, 407, 1179, 5123, 11425, 16548}, 50] (* _Stefano Spezia_, Sep 30 2018 *)
%t A041035 CoefficientList[Series[-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x- 1)/(x^12 - 394*x^6 + 1), {x, 0, 50}], x] (* _Stefano Spezia_, Sep 30 2018 *)
%o A041035 (PARI) vector(26, i, contfracpnqn(contfrac(sqrt(22), i))[2,1]) \\ _Arkadiusz Wesolowski_, Sep 29 2018
%o A041035 (PARI) Vec(-(x^10 - x^9 + 3*x^8 - 13*x^7 + 29*x^6 - 42*x^5 - 29*x^4 - 13*x^3 - 3*x^2 - x - 1)/(x^12 - 394*x^6 + 1) + O(x^50)) \\ _Stefano Spezia_, Sep 30 2018
%Y A041035 Cf. A010478, A041034.
%K A041035 nonn,cofr,frac,easy
%O A041035 0,3
%A A041035 _N. J. A. Sloane_