This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A041085 #67 Aug 16 2025 13:49:54 %S A041085 1,14,197,2772,39005,548842,7722793,108667944,1529074009,21515704070, %T A041085 302748930989,4260000737916,59942759261813,843458630403298, %U A041085 11868363584907985,167000548819115088,2349876047052519217,33065265207554384126,465263588952813896981 %N A041085 Denominators of continued fraction convergents to sqrt(50). %C A041085 For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 14's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - _John M. Campbell_, Jul 08 2011 %C A041085 a(n) equals the number of words of length n on alphabet {0,1,...,14} avoiding runs of zeros of odd lengths. - _Milan Janjic_, Jan 28 2015 %C A041085 From _Michael A. Allen_, Apr 30 2023: (Start) %C A041085 Also called the 14-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence. %C A041085 a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 14 kinds of squares available. (End) %H A041085 Vincenzo Librandi, <a href="/A041085/b041085.txt">Table of n, a(n) for n = 0..800</a> %H A041085 Michael A. Allen and Kenneth Edwards, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17. %H A041085 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A041085 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (14,1). %F A041085 a(n) = round((7+5*sqrt(2))*a(n-1)). - _Vladeta Jovovic_, Jun 15 2003 %F A041085 From _Paul Barry_, Feb 06 2004: (Start) %F A041085 a(n) = A000129(3*n+3)/5. %F A041085 a(n) = (1/20)*((10+7*sqrt(2))*(1+sqrt(2))^(3*n) + (10-7*sqrt(2))*(1-sqrt(2))^(3*n)). %F A041085 a(n-1) = Sum_{i=0..n} Sum_{j=0..n-i} (n!/(i!*j!*(n-i-j)!))*A000129(2*n-i)/5. (End) %F A041085 a(n) = Fibonacci(n+1, 14), the n-th Fibonacci polynomial evaluated at x=14. - _T. D. Noe_, Jan 19 2006 %F A041085 From _Philippe Deléham_, Nov 03 2008: (Start) %F A041085 a(n) = 14*a(n-1) + a(n-2); a(0)=1, a(1)=14. %F A041085 G.f.: 1/(1-14*x-x^2). (End) %F A041085 a(n) = ((7+5*sqrt(2))^(n+1) - (7-5*sqrt(2))^(n+1))/(10*sqrt(2)). - _Gerry Martens_, Jul 11 2015 %p A041085 with(combinat): seq(fibonacci(3*n+3,2)/5, n=0..17); # _Zerinvary Lajos_, Apr 20 2008 %t A041085 LinearRecurrence[{14, 1}, {1, 14}, 30] (* _Vincenzo Librandi_, Nov 17 2012 *) %t A041085 Table[Fibonacci[3n + 3, 2]/5, {n, 0, 20}] (* _Vladimir Reshetnikov_, Sep 16 2016 *) %t A041085 Convergents[Sqrt[50],20]//Denominator (* _Harvey P. Dale_, Aug 16 2025 *) %o A041085 (Magma) [n le 2 select (14)^(n-1) else 14*Self(n-1) +Self(n-2): n in [1..30]]; // _Vincenzo Librandi_, Nov 17 2012 %o A041085 (SageMath) %o A041085 A041085=BinaryRecurrenceSequence(14,1,1,14) %o A041085 [A041085(n) for n in range(31)] # _G. C. Greubel_, Sep 29 2024 %Y A041085 Cf. A000129, A020807, A040042, A041084. %Y A041085 Row n=14 of A073133, A172236 and A352361 and column k=14 of A157103. %K A041085 nonn,cofr,easy,frac %O A041085 0,2 %A A041085 _N. J. A. Sloane_ %E A041085 Additional term from _Colin Barker_, Nov 12 2013