This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A041092 #19 Jul 09 2025 00:15:38 %S A041092 7,15,22,147,169,485,6959,14403,21362,142575,163937,470449,6750223, %T A041092 13970895,20721118,138297603,159018721,456335045,6547709351, %U A041092 13551753747,20099463098,134148532335,154247995433 %N A041092 Numerators of continued fraction convergents to sqrt(54). %H A041092 Vincenzo Librandi, <a href="/A041092/b041092.txt">Table of n, a(n) for n = 0..200</a> %H A041092 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,970,0,0,0,0,0,-1). %F A041092 a(n) = 970*a(n-6)-a(n-12). G.f.: -(x^11-7*x^10+15*x^9-22*x^8+147*x^7-169*x^6-485*x^5-169*x^4-147*x^3-22*x^2-15*x-7)/((x^4-10*x^2+1)*(x^8+10*x^6+99*x^4+10*x^2+1)). [_Colin Barker_, Jul 18 2012] %t A041092 Numerator[Convergents[Sqrt[54],30]] (* _Harvey P. Dale_, Jul 18 2013 *) %t A041092 CoefficientList[Series[- (x^11 - 7 x^10 + 15 x^9 - 22 x^8 + 147 x^7 - 169 x^6 - 485 x^5 - 169 x^4 - 147 x^3 - 22 x^2 - 15 x - 7)/((x^4 - 10 x^2 + 1) (x^8 + 10 x^6 + 99 x^4 + 10 x^2 + 1)), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 25 2013 *) %Y A041092 Cf. A010507, A041093. %K A041092 nonn,cofr,frac,easy %O A041092 0,1 %A A041092 _N. J. A. Sloane_