This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A041105 #26 Sep 08 2022 08:44:53 %S A041105 1,1,3,4,59,63,185,248,3657,3905,11467,15372,226675,242047,710769, %T A041105 952816,14050193,15003009,44056211,59059220,870885291,929944511, %U A041105 2730774313,3660718824,53980837849,57641556673,169263951195,226905507868,3345941061347,3572846569215 %N A041105 Denominators of continued fraction convergents to sqrt(60). %C A041105 Interspersion of 4 linear recurrences with constant coefficients. - _Gerry Martens_, Jun 10 2015 %H A041105 Vincenzo Librandi, <a href="/A041105/b041105.txt">Table of n, a(n) for n = 0..200</a> %H A041105 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,62,0,0,0,-1). %F A041105 G.f.: -(x^2-x-1)*(x^4+4*x^2+1) / ((x^4-8*x^2+1)*(x^4+8*x^2+1)). - _Colin Barker_, Nov 12 2013 %F A041105 a(n) = 62*a(n-4) - a(n-8). - _Vincenzo Librandi_, Dec 11 2013 %p A041105 numtheory:-cfrac(sqrt(60),100,'con','den'): %p A041105 den[1..-2]; # _Robert Israel_, Jun 09 2015 %t A041105 Denominator[Convergents[Sqrt[60], 30]] (* _Vincenzo Librandi_, Dec 11 2013 *) %t A041105 d0 := LinearRecurrence[{62, -1}, {1, 59}, 20] %t A041105 d1 := LinearRecurrence[{62, -1}, {1, 63}, 20] (* A258684 *) %t A041105 d2 := LinearRecurrence[{62, -1}, {3, 185}, 20] %t A041105 d3 := LinearRecurrence[{62, -1}, {4, 248}, 20] %t A041105 Flatten[MapIndexed[{d0[[#]] , d1[[#]], d2[[#]] , d3[[#]]} &, %t A041105 Range[10]]] (* _Gerry Martens_, Jun 09 2015 *) %t A041105 LinearRecurrence[{0, 0, 0, 62, 0, 0, 0, -1},{1, 1, 3, 4, 59, 63, 185, 248},30] (* _Ray Chandler_, Aug 03 2015 *) %o A041105 (Magma) I:=[1, 1, 3, 4, 59, 63, 185, 248]; [n le 8 select I[n] else 62*Self(n-4)-Self(n-8): n in [1..40]]; // _Vincenzo Librandi_, Dec 11 2013 %Y A041105 Cf. A041104, A040052, A020817, A010513. %Y A041105 Cf. A258684. %K A041105 nonn,cofr,easy,frac %O A041105 0,3 %A A041105 _N. J. A. Sloane_ %E A041105 More terms from _Colin Barker_, Nov 12 2013