cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041139 Denominators of continued fraction convergents to sqrt(78).

This page as a plain text file.
%I A041139 #23 Jul 09 2025 00:19:51
%S A041139 1,1,5,6,101,107,529,636,10705,11341,56069,67410,1134629,1202039,
%T A041139 5942785,7144824,120259969,127404793,629879141,757283934,12746422085,
%U A041139 13503706019,66761246161,80264952180,1351000481041,1431265433221,7076062213925,8507327647146
%N A041139 Denominators of continued fraction convergents to sqrt(78).
%H A041139 Vincenzo Librandi, <a href="/A041139/b041139.txt">Table of n, a(n) for n = 0..200</a>
%H A041139 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,106,0,0,0,-1).
%F A041139 G.f.: -(x^2-x-1)*(x^4+6*x^2+1) / (x^8-106*x^4+1). - _Colin Barker_, Nov 13 2013
%F A041139 a(n) = 106*a(n-4) - a(n-8). - _Vincenzo Librandi_, Dec 11 2013
%t A041139 Denominator/@Convergents[Sqrt[78], 50] (* _Vladimir Joseph Stephan Orlovsky_, Jul 05 2011 *)
%t A041139 CoefficientList[Series[-(x^2 - x - 1) (x^4 + 6*x^2 + 1)/(x^8 - 106 x^4 + 1), {x, 0, 30}], x] (* _Vincenzo Librandi_, Dec 11 2013 *)
%t A041139 LinearRecurrence[{0,0,0,106,0,0,0,-1},{1,1,5,6,101,107,529,636},30] (* _Harvey P. Dale_, Sep 15 2018 *)
%o A041139 (Magma) I:=[1,1,5,6,101,107,529,636]; [n le 8 select I[n] else 106*Self(n-4)-Self(n-8): n in [1..40]]; // _Vincenzo Librandi_, Dec 11 2013
%Y A041139 Cf. A041138, A010156, A020835, A010530.
%K A041139 nonn,frac,easy
%O A041139 0,3
%A A041139 _N. J. A. Sloane_