cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041220 Numerators of continued fraction convergents to sqrt(122).

This page as a plain text file.
%I A041220 #30 Dec 26 2023 08:06:44
%S A041220 11,243,5357,118097,2603491,57394899,1265291269,27893802817,
%T A041220 614928953243,13556330774163,298854205984829,6588348862440401,
%U A041220 145242529179673651,3201923990815260723,70587570327115409557,1556128471187354270977,34305413936448909371051
%N A041220 Numerators of continued fraction convergents to sqrt(122).
%H A041220 Vincenzo Librandi, <a href="/A041220/b041220.txt">Table of n, a(n) for n = 0..200</a>
%H A041220 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A041220 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (22,1).
%F A041220 From _Philippe Deléham_, Nov 21 2008: (Start)
%F A041220 a(n) = 22*a(n-1) + a(n-2) for n > 1, a(0)=11, a(1)=243.
%F A041220 G.f.: (11+x) / (1-22*x-x^2). (End)
%t A041220 Numerator/@Convergents[Sqrt[122],20] (* _Harvey P. Dale_, Jun 04 2011 *)
%t A041220 CoefficientList[Series[(11 + x)/(1 - 22 x - x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Oct 31 2013 *)
%Y A041220 Cf. A041221.
%K A041220 nonn,cofr,frac,easy
%O A041220 0,1
%A A041220 _N. J. A. Sloane_
%E A041220 More terms from _Colin Barker_, Nov 05 2013