cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041480 Numerators of continued fraction convergents to sqrt(257).

This page as a plain text file.
%I A041480 #27 Jul 09 2025 00:53:56
%S A041480 16,513,16432,526337,16859216,540021249,17297539184,554061275137,
%T A041480 17747258343568,568466328269313,18208669762961584,583245898743040001,
%U A041480 18682077429540241616,598409723644030771713,19167793234038524936432,613967793212876828737537
%N A041480 Numerators of continued fraction convergents to sqrt(257).
%H A041480 Vincenzo Librandi, <a href="/A041480/b041480.txt">Table of n, a(n) for n = 0..200</a>
%H A041480 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a>
%H A041480 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (32,1).
%F A041480 a(n) = 32*a(n-1)+a(n-2), n>1 ; a(0)=16, a(1)=513. G.f.: (16+x)/(1-32*x-x^2). - _Philippe Deléham_, Nov 23 2008
%t A041480 Numerator[Convergents[Sqrt[257],40]] (* or *) LinearRecurrence[{32,1},{16,513},40] (* _Harvey P. Dale_, Aug 13 2012 *)
%Y A041480 Cf. A041481.
%K A041480 nonn,cofr,frac,easy
%O A041480 0,1
%A A041480 _N. J. A. Sloane_
%E A041480 Additional term from _Colin Barker_, Nov 07 2013