This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042013 #38 Jan 05 2025 19:51:35 %S A042013 1,46,2117,97428,4483805,206352458,9496696873,437054408616, %T A042013 20113999493209,925681031096230,42601441429919789,1960591986807406524, %U A042013 90229832834570619893,4152532902377055921602,191106743342179143013585,8795062726642617634546512 %N A042013 Denominators of continued fraction convergents to sqrt(530). %C A042013 From _Michael A. Allen_, Dec 02 2023: (Start) %C A042013 Also called the 46-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence. %C A042013 a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 46 kinds of squares available. (End) %H A042013 Vincenzo Librandi, <a href="/A042013/b042013.txt">Table of n, a(n) for n = 0..200</a> %H A042013 Michael A. Allen and Kenneth Edwards, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/60-5/allen.pdf">Fence tiling derived identities involving the metallonacci numbers squared or cubed</a>, Fib. Q. 60:5 (2022) 5-17. %H A042013 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A042013 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (46,1). %F A042013 a(n) = F(n, 46), the n-th Fibonacci polynomial evaluated at x=46. - _T. D. Noe_, Jan 19 2006 %F A042013 From _Philippe Deléham_, Nov 23 2008: (Start) %F A042013 a(n) = 46*a(n-1) + a(n-2) for n > 1; a(0)=1, a(1)=46. %F A042013 G.f.: 1/(1-46*x-x^2). (End) %t A042013 Denominator[Convergents[Sqrt[530], 40]] (* _Vincenzo Librandi_, Jan 12 2014 *) %Y A042013 Cf. A042012, A040506. %Y A042013 Row n=46 of A073133, A172236 and A352361 and column k=46 of A157103. %K A042013 nonn,frac,easy %O A042013 0,2 %A A042013 _N. J. A. Sloane_ %E A042013 Additional term from _Colin Barker_, Nov 29 2013