This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042155 #17 Jul 09 2025 02:20:46 %S A042155 1,1,2,13,15,28,1359,1387,2746,17863,20609,38472,1867265,1905737, %T A042155 3773002,24543749,28316751,52860500,2565620751,2618481251,5184102002, %U A042155 33723093263,38907195265,72630288528,3525161044609,3597791333137,7122952377746,46335505599613 %N A042155 Denominators of continued fraction convergents to sqrt(602). %H A042155 Vincenzo Librandi, <a href="/A042155/b042155.txt">Table of n, a(n) for n = 0..200</a> %H A042155 <a href="/index/Rec">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,1374,0,0,0,0,0,-1). %F A042155 G.f.: -(x^2-2*x-1)*(x^4-x^3+2*x^2+x+1)*(x^4+2*x^3+5*x^2-2*x+1) / (x^12-1374*x^6+1). - _Colin Barker_, Nov 19 2013 %t A042155 Denominator[Convergents[Sqrt[602], 30]] (* _Vincenzo Librandi_, Jan 15 2014 *) %t A042155 LinearRecurrence[{0,0,0,0,0,1374,0,0,0,0,0,-1},{1,1,2,13,15,28,1359,1387,2746,17863,20609,38472},30] (* _Harvey P. Dale_, May 20 2025 *) %Y A042155 Cf. A042154, A040577. %K A042155 nonn,frac,easy %O A042155 0,3 %A A042155 _N. J. A. Sloane_ %E A042155 More terms from _Colin Barker_, Nov 19 2013