This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042624 #28 Jul 09 2025 03:07:12 %S A042624 29,1683,97643,5664977,328666309,19068310899,1106290698451, %T A042624 64183928821057,3723774162319757,216043085343366963, %U A042624 12534222724077603611,727200961081844376401,42190189965471051434869,2447758218958402827598803 %N A042624 Numerators of continued fraction convergents to sqrt(842). %H A042624 Vincenzo Librandi, <a href="/A042624/b042624.txt">Table of n, a(n) for n = 0..200</a> %H A042624 Tanya Khovanova, <a href="http://www.tanyakhovanova.com/RecursiveSequences/RecursiveSequences.html">Recursive Sequences</a> %H A042624 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (58, 1). %F A042624 a(n) = 58*a(n-1)+a(n-2) for n>1; a(0)=29, a(1)=1683. G.f.: (29+x)/(1-58*x-x^2). [_Philippe Deléham_, Nov 23 2008] %t A042624 Numerator[Convergents[Sqrt[842], 20]] (* or *) LinearRecurrence[{58, 1}, {29, 1683}, 20] (* _Harvey P. Dale_, Sep 24 2013 *) %t A042624 CoefficientList[Series[(29 + x)/(1 - 58 x - x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Nov 30 2013 *) %Y A042624 Cf. A042625. %K A042624 nonn,cofr,frac,easy %O A042624 0,1 %A A042624 _N. J. A. Sloane_