This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042943 #22 Aug 01 2025 01:55:52 %S A042943 1,2,3,5,7,9,11,13,14,17,19,22,23,25,26,27,29,31,33,35,37,38,39,41,43, %T A042943 45,46,47,49,50,51,53,55,58,59,61,62,65,66,67,69,70,71,73,74,75,77,79, %U A042943 81,83,85,86,87,89,91,93,94,95,97,98,99,101,102,103,106,107,109,111 %N A042943 Numbers k such that binomial(2^k, k) is divisible by binomial(2^k, 2). %C A042943 Does not contain multiples of 4 (A008586). %F A042943 k : A014070(k) mod A006516(k) = binomial(2^k, k) mod binomial(2^n, 2) = 0. %t A042943 Select[Range[150],Divisible[Binomial[2^#,#],Binomial[2^#,2]]&] (* _Harvey P. Dale_, Mar 24 2011 *) %o A042943 (PARI) isok(k) = (binomial(2^k, k) % binomial(2^k, 2)) == 0; \\ _Michel Marcus_, May 14 2018 %o A042943 (Python) %o A042943 from math import comb %o A042943 from itertools import count, islice %o A042943 def A042943_gen(startvalue=1): # generator of terms >= startvalue %o A042943 for k in count(max(startvalue,1)): %o A042943 if comb(m:=1<<k,k)%comb(m,2) == 0: %o A042943 yield k %o A042943 A042943_list = list(islice(A042943_gen(),30)) # _Chai Wah Wu_, Jul 31 2025 %Y A042943 Cf. A014070, A006516. %K A042943 easy,nonn %O A042943 1,2 %A A042943 _Labos Elemer_, Apr 11 2001