cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A042982 Number of degree-n irreducible polynomials over GF(2) with trace = 1 and subtrace = 1.

Original entry on oeis.org

0, 1, 0, 1, 2, 2, 5, 8, 13, 27, 45, 85, 160, 288, 550, 1024, 1920, 3654, 6885, 13107, 24989, 47616, 91225, 174760, 335462, 645435, 1242600, 2396745, 4628480, 8947294, 17318945, 33554432, 65074253, 126324495, 245424829, 477218560, 928645120, 1808400384, 3524082400, 6871947672, 13408665600, 26178873147
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    L[n_, k_] := Sum[ MoebiusMu[d]*Binomial[n/d, k/d], {d, Divisors[GCD[n, k]]}]/n; a[n_] := Sum[ If[ Mod[n+k, 4] == 3, L[n, k], 0], {k, 0, n}]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Jun 28 2012, from formula *)
  • PARI
    L(n, k) = sumdiv(gcd(n,k), d, moebius(d) * binomial(n/d, k/d) );
    a(n) = sum(k=0, n, if( (n+k)%4==3, L(n, k), 0 ) ) / n;
    vector(33,n,a(n))
    /* Joerg Arndt, Jun 28 2012 */

Formula

a(n) = (1/n) * Sum_{ L(n, k) : n+k = 3 mod 4}, where L(n, k) = Sum_{ mu(d)*binomial(n/d, k/d) : d|gcd(n, k)}.