This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042984 #36 Sep 08 2022 08:44:55 %S A042984 1,11,48,140,326,657,1197,2024,3231,4927,7238,10308,14300,19397,25803, %T A042984 33744,43469,55251,69388,86204,106050,129305,156377,187704,223755, %U A042984 265031,312066,365428,425720,493581,569687,654752,749529,854811,971432 %N A042984 Number of n-dimensional partitions of 6. %D A042984 G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190. %H A042984 Vincenzo Librandi, <a href="/A042984/b042984.txt">Table of n, a(n) for n = 0..1000</a> %H A042984 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,6,-1). %F A042984 a(n) = A008780(n) - binomial(n, 4) - binomial(n, 3). %F A042984 G.f.: (x^4 - 3*x^3 - 3*x^2 + 5*x + 1)/(x-1)^6. - _Colin Barker_, Jul 22 2012 %F A042984 a(n) = (n+1)*(n+4)*(n^3 + 40*n^2 + 61*n + 30)/120. - _Robert Israel_, Jul 06 2016 %p A042984 a:= n-> 1+10*n+27*binomial(n, 2)+28*binomial(n, 3) %p A042984 +11*binomial(n, 4)+binomial(n, 5): %p A042984 seq(a(n), n=0..34); %t A042984 LinearRecurrence[{6,-15,20,-15,6,-1},{1,11,48,140,326,657},40] (* _Harvey P. Dale_, Jan 27 2013 *) %t A042984 CoefficientList[Series[(x^4 -3x^3 -3x^2 +5x +1)/(x-1)^6, {x, 0, 40}], x] (* _Vincenzo Librandi_, Oct 27 2013 *) %o A042984 (Magma) [1 + 10*n + 27*Binomial(n,2) + 28*Binomial(n,3) + 11*Binomial(n,4) + Binomial(n,5): n in [0..40]]; // _Vincenzo Librandi_, Oct 27 2013 %o A042984 (PARI) my(x='x+O('x^40)); Vec((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6) \\ _G. C. Greubel_, Feb 17 2019 %o A042984 (Sage) ((x^4-3*x^3-3*x^2+5*x+1)/(x-1)^6).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 17 2019 %o A042984 (GAP) List([0..40],n->(n+1)*(n+4)*(n^3+40*n^2+61*n+30)/120); # _Muniru A Asiru_, Feb 17 2019 %Y A042984 Cf. A007326, A007327, A008780. %K A042984 nonn,easy %O A042984 0,2 %A A042984 _Alford Arnold_, Aug 15 1998 %E A042984 More terms from _Erich Friedman_