This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042985 #13 Sep 08 2022 08:44:55 %S A042985 1,17,178,1477,10654,69930,428772,2496813,13962982,75582078,398302268, %T A042985 2052354850,10375356460,51596749300,252953904072,1224672639357, %U A042985 5863899363510,27801377704310,130648178243660,609082400931158 %N A042985 Convolution of A000108 (Catalan numbers) with A038846. %C A042985 Also convolution of A045724 with A000984 (central binomial coefficients); also convolution of A042941 with A000302 (powers of 4). %H A042985 G. C. Greubel, <a href="/A042985/b042985.txt">Table of n, a(n) for n = 0..1000</a> %F A042985 a(n) = binomial(n+4, 3)*(4^(n+1) - A000984(n+4)/A000984(3))/2, where A000984(n) = binomial(2*n, n). %F A042985 G.f.: (1 - sqrt(1-4*x))/(2*x*(1-4*x)^4). %F A042985 D-finite with recurrence: n*(n+1)*a(n) -2*n*(4*n+13)*a(n-1) +8*(n+3)*(2*n+5)*a(n-2)=0. - _R. J. Mathar_, Jan 28 2020 %t A042985 CoefficientList[Series[(1-Sqrt[1-4*x])/(2*x*(1-4*x)^4), {x, 0, 20}], x] (* _G. C. Greubel_, Feb 17 2019 *) %o A042985 (PARI) my(x='x+O('x^20)); Vec((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)) \\ _G. C. Greubel_, Feb 17 2019 %o A042985 (Magma) m:=20; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-Sqrt(1-4*x))/(2*x*(1-4*x)^4) )); // _G. C. Greubel_, Feb 17 2019 %o A042985 (Sage) ((1-sqrt(1-4*x))/(2*x*(1-4*x)^4)).series(x, 20).coefficients(x, sparse=False) # _G. C. Greubel_, Feb 17 2019 %K A042985 easy,nonn %O A042985 0,2 %A A042985 _Wolfdieter Lang_