This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A042993 #29 Sep 08 2022 08:44:55 %S A042993 2,3,5,7,13,17,23,37,43,47,53,67,73,83,97,103,107,113,127,137,157,163, %T A042993 167,173,193,197,223,227,233,257,263,277,283,293,307,313,317,337,347, %U A042993 353,367,373,383,397,433,443,457 %N A042993 Primes congruent to {0, 2, 3} mod 5. %C A042993 Also, primes p that are quadratic nonresidues modulo 5 (and from the quadratic reciprocity law, odd p such that 5 is a quadratic nonresidue modulo p). For primes p' that are quadratic residues modulo 5 (and such that 5 is a quadratic residue mod p') see A045468. - _Lekraj Beedassy_, Jul 13 2004 %C A042993 Primes p that divide Fibonacci(p+1). - _Ron Knott_, Jun 27 2014 %D A042993 G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, Theorem 180 %H A042993 Vincenzo Librandi, <a href="/A042993/b042993.txt">Table of n, a(n) for n = 1..1000</a> %e A042993 For prime 7, Fibonacci(8) = 21 = 3*7, for prime 13, Fibonacci(14) = 377 = 13*29. %t A042993 Select[Prime[Range[100]],MemberQ[{0,2,3},Mod[#,5]]&] (* _Harvey P. Dale_, Mar 03 2012 *) %o A042993 (Magma) [p: p in PrimesUpTo(600) | p mod 5 in [0, 2, 3]]; // _Vincenzo Librandi_, Aug 09 2012 %Y A042993 Primes dividing A001654. %Y A042993 Cf. A038872 for primes p which divide Fibonacci(p-1). - _Ron Knott_, Jun 27 2014 %K A042993 nonn,easy %O A042993 1,1 %A A042993 _N. J. A. Sloane_