cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A043261 Sum of the binary digits of the n-th base-2 palindrome.

Original entry on oeis.org

0, 1, 2, 2, 3, 2, 4, 2, 3, 4, 5, 2, 4, 4, 6, 2, 3, 4, 5, 4, 5, 6, 7, 2, 4, 4, 6, 4, 6, 6, 8, 2, 3, 4, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 7, 8, 9, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 2, 3, 4, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 7, 8, 9, 4, 5, 6, 7, 6, 7, 8, 9, 6, 7, 8
Offset: 1

Views

Author

Keywords

Examples

			The fourth base-2 palindrome is 5 = 101_2, so a(4) = 1+0+1 = 2.
		

Crossrefs

Cf. A006995 (base-2 palindromes), A057148.

Programs

  • Maple
    b:= proc(n) option remember;
      procname(floor(n/2)) end proc;
    b(1):= 0; b(2):= 1;
    c:= proc(n) option remember;
      procname(floor(n/2)) + (n mod 2) end proc;
    c(1):= 0; c(2):= 1;
    A043261:= n -> 2*c(n) - (n mod 2)*b(n);
    A043261(2):= 1;# Robert Israel, Apr 06 2014
  • Python
    def A043261(n):
        if n == 1: return 0
        a = 1<<(l:=n.bit_length()-2)
        m = a|(n&a-1)
        return (m.bit_count()<<1) - (0 if a&n else m&1) # Chai Wah Wu, Jun 13 2024

Formula

Let b(1) = 0, b(2) = 1, otherwise b(2*n-1) = b(n-1) and b(2*n) = b(n).
Let c(1) = 0, c(2) = 1, otherwise c(2*n-1) = c(n-1)+1 and c(2*n) = c(n).
Then for n >= 2, a(2*n-1) = 2*c(2*n-1) - b(2*n-1) and a(2*n) = 2*c(2*n).

Extensions

edited by Robert Israel, Apr 06 2014