A043261 Sum of the binary digits of the n-th base-2 palindrome.
0, 1, 2, 2, 3, 2, 4, 2, 3, 4, 5, 2, 4, 4, 6, 2, 3, 4, 5, 4, 5, 6, 7, 2, 4, 4, 6, 4, 6, 6, 8, 2, 3, 4, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 7, 8, 9, 2, 4, 4, 6, 4, 6, 6, 8, 4, 6, 6, 8, 6, 8, 8, 10, 2, 3, 4, 5, 4, 5, 6, 7, 4, 5, 6, 7, 6, 7, 8, 9, 4, 5, 6, 7, 6, 7, 8, 9, 6, 7, 8
Offset: 1
Examples
The fourth base-2 palindrome is 5 = 101_2, so a(4) = 1+0+1 = 2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
b:= proc(n) option remember; procname(floor(n/2)) end proc; b(1):= 0; b(2):= 1; c:= proc(n) option remember; procname(floor(n/2)) + (n mod 2) end proc; c(1):= 0; c(2):= 1; A043261:= n -> 2*c(n) - (n mod 2)*b(n); A043261(2):= 1;# Robert Israel, Apr 06 2014
-
Python
def A043261(n): if n == 1: return 0 a = 1<<(l:=n.bit_length()-2) m = a|(n&a-1) return (m.bit_count()<<1) - (0 if a&n else m&1) # Chai Wah Wu, Jun 13 2024
Formula
Let b(1) = 0, b(2) = 1, otherwise b(2*n-1) = b(n-1) and b(2*n) = b(n).
Let c(1) = 0, c(2) = 1, otherwise c(2*n-1) = c(n-1)+1 and c(2*n) = c(n).
Then for n >= 2, a(2*n-1) = 2*c(2*n-1) - b(2*n-1) and a(2*n) = 2*c(2*n).
Extensions
edited by Robert Israel, Apr 06 2014