This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A043307 #22 May 27 2023 18:53:58 %S A043307 1,2,9,11,18,19,82,83,99,100,163,164,171,173,738,740,747,748,892,893, %T A043307 900,902,1467,1469,1476,1477,1540,1541,1557,1558,6643,6644,6660,6661, %U A043307 6724,6725,6732,6734,8028,8030,8037,8038,8101,8102,8118,8119 %N A043307 a(n) = A033001(n)/4. %C A043307 Also: Numbers which, written in base 9, have only digits 0, 1 or 2, and no two adjacent digits equal. - _M. F. Hasler_, Feb 03 2014 %H A043307 Robert Israel, <a href="/A043307/b043307.txt">Table of n, a(n) for n = 1..10000</a> %F A043307 From _Robert Israel_, Jan 29 2017: (Start) %F A043307 If a(n) == 0 (mod 3) then a(2*n+1) = 9*a(n) + 1 else a(2*n+1) = 9*a(n). %F A043307 If a(n) == 2 (mod 3) then a(2*n+2) = 9*a(n) + 1 else a(2*n+1) = 9*a(n)+2. %F A043307 a(4k+5) = 9*a(2k+2). %F A043307 (End) %p A043307 A[1]:= [1,2]: %p A043307 for d from 2 to 6 do %p A043307 A[d]:= map(t -> seq(9*t+j,j=subs(t mod 9 = NULL, [0,1,2])), A[d-1]) %p A043307 od: %p A043307 seq(op(A[d]),d=1..6); # _Robert Israel_, Jan 29 2017 %t A043307 Table[FromDigits[#,9]&/@Select[Tuples[{0,1,2},n],Min[Abs[Differences[#]]]>0&],{n,2,5}]// Flatten// Union (* _Harvey P. Dale_, May 27 2023 *) %o A043307 (PARI) is_A043307(n)=(n=[n])&&!until(!n[1],((n=divrem(n[1],9))[2]<3 && n[1]%3!=n[2])||return) \\ _M. F. Hasler_, Feb 03 2014 %o A043307 (PARI) a(n) = my(v=binary(n+1)); v[1]=0; for(i=2,#v, v[i]+=(v[i]>=v[i-1])); fromdigits(v,9); \\ _Kevin Ryde_, Mar 13 2021 %Y A043307 Cf. A043308 - A043320, A043291, A033001 - A033014, A033016 - A033029. %K A043307 nonn,base %O A043307 1,2 %A A043307 _Clark Kimberling_