cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A043320 Numbers which, written in base 256, have all digits less than 16 and no two adjacent digits equal.

This page as a plain text file.
%I A043320 #30 Mar 10 2023 13:33:14
%S A043320 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,256,258,259,260,261,262,263,264,
%T A043320 265,266,267,268,269,270,271,512,513,515,516,517,518,519,520,521,522,
%U A043320 523,524,525,526,527,768,769,770,772,773,774
%N A043320 Numbers which, written in base 256, have all digits less than 16 and no two adjacent digits equal.
%C A043320 Sequence A033014 consists of the numbers that have all base 16 digits repeated *exactly* twice. (This is equivalent to say that the base-256 digits are 0x00, 0x11, 0x22,... or 0xFF, in hex notation, and no two adjacent base-256 digits are equal.) Thus, these numbers are divisible by 0x11 = 17, and the result of the division is a number which has no other base-256 digits than 0x00, 0x01,... or 0x0F, and no two adjacent digits equal. Conversely, it is clear that exactly these numbers are terms of A033014 when multiplied by 17 = 0x11. - _M. F. Hasler_, Feb 05 2014
%H A043320 Vincenzo Librandi, <a href="/A043320/b043320.txt">Table of n, a(n) for n = 1..1800</a>
%F A043320 a(n) = A033014(n)/17. [This was initially the definition of the sequence. - _M. F. Hasler_, Feb 03 2014]
%t A043320 Select[Range[20000], Union[Length/@Split[IntegerDigits[#, 16]]]=={2}&]/17 (* _Vincenzo Librandi_, Feb 06 2014 *)
%o A043320 (PARI) is_A043320(n)={(n=[n])&&!until(!n[1], ((n=divrem(n[1], 256))[2]<16 && n[1]%16!=n[2])||return)} \\ _M. F. Hasler_, Feb 03 2014
%o A043320 (Python)
%o A043320 from itertools import count, islice, groupby
%o A043320 def A043320_gen(startvalue=1): # generator of terms >= startvalue
%o A043320     return filter(lambda n:set(len(list(g)) for k, g in groupby(hex(17*n)[2:]))=={2},count(max(startvalue,1)))
%o A043320 A043320_list = list(islice(A043320_gen(),20)) # _Chai Wah Wu_, Mar 10 2023
%Y A043320 Cf. A043307 - A043319, A043291, A033001 - A033014, A033015 - A033029.
%K A043320 nonn,base
%O A043320 1,2
%A A043320 _Clark Kimberling_
%E A043320 New definition by _M. F. Hasler_, Feb 03 2014