cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A044072 Numbers k such that string 2,3 occurs in the base 4 representation of k but not of k-1.

This page as a plain text file.
%I A044072 #16 Nov 27 2021 04:52:20
%S A044072 11,27,43,59,75,91,107,123,139,155,171,203,219,235,251,267,283,299,
%T A044072 315,331,347,363,379,395,411,427,459,475,491,507,523,539,555,571,587,
%U A044072 603,619,635,651,667,683,779,795,811,827,843,859,875,891,907,923,939,971
%N A044072 Numbers k such that string 2,3 occurs in the base 4 representation of k but not of k-1.
%C A044072 Members are of form 16k+11, but not all such numbers are in the sequence. The first missing number is 187.
%H A044072 Michael S. Branicky, <a href="/A044072/b044072.txt">Table of n, a(n) for n = 1..10000</a>
%t A044072 Flatten[Position[Partition[Table[If[MemberQ[Partition[IntegerDigits[n, 4], 2, 1], {2, 3}], 1, 0], {n, 1000}], 2, 1], {0, 1}]] + 1 (* _Vincenzo Librandi_, Aug 19 2015 *)
%o A044072 (Python)
%o A044072 from sympy.ntheory.factor_ import digits
%o A044072 def has23(n): return "23" in "".join(map(str, digits(n, 4)[1:]))
%o A044072 def ok(n): return has23(n) and not has23(n-1)
%o A044072 print([k for k in range(972) if ok(k)]) # _Michael S. Branicky_, Nov 27 2021
%Y A044072 Differs from A106839.
%Y A044072 Cf. A044453.
%K A044072 nonn,base
%O A044072 1,1
%A A044072 _Clark Kimberling_
%E A044072 a(48) and beyond from _Michael S. Branicky_, Nov 27 2021