This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045309 #48 Apr 29 2025 04:53:28 %S A045309 2,3,5,11,17,23,29,41,47,53,59,71,83,89,101,107,113,131,137,149,167, %T A045309 173,179,191,197,227,233,239,251,257,263,269,281,293,311,317,347,353, %U A045309 359,383,389,401,419,431,443,449,461,467,479,491,503,509,521,557,563 %N A045309 Primes congruent to {0, 2} mod 3. %C A045309 Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - _Klaus Brockhaus_, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001 %C A045309 2, 3 and primes congruent to 5 mod 6. - _Chai Wah Wu_, Apr 28 2025 %H A045309 Vincenzo Librandi, <a href="/A045309/b045309.txt">Table of n, a(n) for n = 1..1000</a> %F A045309 a(n) ~ 2n log n. - _Charles R Greathouse IV_, Apr 20 2015 %t A045309 Select[Prime[Range[150]],MemberQ[{0,2},Mod[#,3]]&] (* _Harvey P. Dale_, Jun 14 2011 *) %o A045309 (Magma) [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // _Klaus Brockhaus_, Apr 11 2009 %o A045309 (PARI) is(n)=isprime(n) && n%3!=1 \\ _Charles R Greathouse IV_, Apr 20 2015 %o A045309 (Python) %o A045309 from itertools import count, islice %o A045309 from sympy import isprime %o A045309 def A045309_gen(): # generator of terms %o A045309 yield from (2,3) %o A045309 yield from filter(isprime, count(5,6)) %o A045309 A045309_list = list(islice(A045309_gen(),48)) # _Chai Wah Wu_, Apr 28 2025 %Y A045309 Cf. A040028, A014752, A060121, A003627, A007528, A045410. %K A045309 nonn,easy %O A045309 1,1 %A A045309 _N. J. A. Sloane_ %E A045309 Edited by _N. J. A. Sloane_, Apr 11 2009