This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045336 #35 Mar 24 2025 16:01:50 %S A045336 2,3,5,7,353,373,727,757,32323,33533,35353,35753,37273,37573,72227, %T A045336 72727,73237,75557,77377,3222223,3223223,3233323,3252523,3272723, %U A045336 3337333,3353533,3553553,3722273,3732373,3773773,7257527,7327237,7352537,7527257,7722277 %N A045336 Palindromic terms from A019546. %C A045336 a(33) = 7352537 is the smallest palindromic prime using all prime digits (see Prime Curios! link). - _Bernard Schott_, Nov 10 2020 %H A045336 Michael S. Branicky, <a href="/A045336/b045336.txt">Table of n, a(n) for n = 1..12725</a> (all terms with <= 17 digits; terms 1..330 from Harvey P. Dale) %H A045336 Chris K. Caldwell and G. L. Honaker, Jr., <a href="https://primes.utm.edu/curios/page.php?short=7352537">7352537</a>, Prime Curios! %t A045336 Select[ Range[ 1, 10^7 ], PrimeQ[ # ] && FreeQ[ RealDigits[ # ][ [ 1 ] ], 0 ] && FreeQ[ RealDigits[ # ][ [ 1 ] ], 1 ] && FreeQ[ RealDigits[ # ][ [ 1 ] ], 4 ] && FreeQ[ RealDigits[ # ][ [ 1 ] ], 6 ] && FreeQ[ RealDigits[ # ][ [ 1 ] ], 8 ] && FreeQ[ RealDigits[ # ][ [ 1 ] ], 9 ] && RealDigits[ # ][ [ 1 ] ] == Reverse[ RealDigits[ # ][ [ 1 ] ] ] & ] %t A045336 Table[FromDigits/@Select[Tuples[{2,3,5,7},n],#==Reverse[#]&&PrimeQ[ FromDigits[ #]]&],{n,12}]//Flatten (* _Harvey P. Dale_, Jun 19 2016 *) %t A045336 Select[Flatten[Table[FromDigits/@Tuples[{2,3,5,7},n],{n,10}]],PrimeQ[#]&&PalindromeQ[#]&] (* _Harvey P. Dale_, Mar 24 2025 *) %t A045336 f@n_ := Prime@n; %t A045336 g@l_ := FromDigits@# & /@ Table[Join[l, {f@i}, Reverse@l], {i, 4}]; %t A045336 Flatten[g@# & /@ (f@# & /@ %t A045336 Select[Table[IntegerDigits[n, 5], {n, 2000}], FreeQ[#, 0] &])] // %t A045336 Select[PrimeQ] (* _Hans Rudolf Widmer_, Dec 18 2021 *) %o A045336 (Python) %o A045336 from sympy import isprime %o A045336 from itertools import count, product, takewhile %o A045336 def primedigpals(): %o A045336 for d in count(1, 2): %o A045336 for p in product("2357", repeat=d//2): %o A045336 left = "".join(p) %o A045336 for mid in "2357": %o A045336 yield int(left + mid + left[::-1]) %o A045336 def aupto(N): %o A045336 return list(takewhile(lambda x: x<=N, filter(isprime, primedigpals()))) %o A045336 print(aupto(10**7)) # _Michael S. Branicky_, Dec 18 2021 %Y A045336 Cf. A019546 and A002385. %K A045336 nonn,base %O A045336 1,1 %A A045336 _Robert G. Wilson v_, Aug 18 2000