This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045373 #29 Sep 08 2022 08:44:55 %S A045373 2,7,11,23,29,37,43,53,67,71,79,107,109,113,127,137,149,151,163,179, %T A045373 191,193,197,211,233,239,263,277,281,317,331,337,347,359,373,379,389, %U A045373 401,421,431,443,449,457,463,487 %N A045373 Primes congruent to {0, 1, 2, 4} mod 7. %C A045373 Primes of the form x^2 + xy + 2y^2, discriminant -7. - _N. J. A. Sloane_, Jun 01 2014 %C A045373 Primes of the form x^2 - xy + 2y^2 with x and y nonnegative. - _T. D. Noe_, May 07 2005 %C A045373 Also, primes which are squares (mod 7) (or, (mod 14): see A191017 for a sequence formerly defined as such). - _M. F. Hasler_, Jan 15 2016 %H A045373 Vincenzo Librandi, <a href="/A045373/b045373.txt">Table of n, a(n) for n = 1..1000</a> %H A045373 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A045373 Select[Prime[Range[500]],MemberQ[{0,1,2,4},Mod[#,7]]&] (* _Vincenzo Librandi_, Jul 13 2012 *) %o A045373 (Magma) [p: p in PrimesUpTo(740)|p mod 7 in [0, 1, 2, 4]]; // _Vincenzo Librandi_, Jul 13 2012 %o A045373 (PARI) select(p->issquare(Mod(p,7))&&isprime(p),[1..1000]) \\ _M. F. Hasler_, Jan 15 2016 %Y A045373 Primes in A028951. %Y A045373 Cf. A191017, A003625 (complement). %K A045373 nonn %O A045373 1,1 %A A045373 _N. J. A. Sloane_