This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045501 #46 Feb 05 2022 16:22:25 %S A045501 1,1,4,14,54,233,1101,5625,30846,180474,1120666,7352471,50772653, %T A045501 367819093,2787354668,22039186530,181408823710,1551307538185, %U A045501 13756835638385,126298933271289,1198630386463990,11742905240821910 %N A045501 Third-from-right diagonal of triangle A121207. %C A045501 With leading 0 and offset 2: number of permutations beginning with 321 and avoiding 1-23. - _Ralf Stephan_, Apr 25 2004 %C A045501 Second diagonal in table of binomial recurrence coefficients. Related to A040027. - _Vladeta Jovovic_, Feb 05 2008 %C A045501 Equals eigensequence of triangle A104712. - _Gary W. Adamson_, Apr 10 2009 %C A045501 a(n) is the number of set partitions of {1,2,...,n+1} in which the last block has length 2; the blocks are arranged in order of their least element. - _Don Knuth_, Jun 12 2017 %H A045501 S. Kitaev, <a href="https://www.mat.univie.ac.at/~slc/wpapers/s48kitaev.html">Generalized pattern avoidance with additional restrictions</a>, Sem. Lothar. Combinat. B48e (2003). %H A045501 S. Kitaev and T. Mansour, <a href="https://arxiv.org/abs/math/0205182">Simultaneous avoidance of generalized patterns</a>, arXiv:math/0205182 [math.CO], 2002. %F A045501 a(n+1) = Sum_{k=0..n} binomial(n+2, k+2)*a(k). - _Vladeta Jovovic_, Nov 10 2003 %F A045501 With offset 2, e.g.f.: x^2 + exp(exp(x))/2 * Integral_{0..x} t^2*exp(-exp(t)+t) dt. - _Ralf Stephan_, Apr 25 2004 %F A045501 G.f.: A(x) = Sum_{k>=0} x^(k+1)/((1-k*x)^2 * Product_{m=0..k} (1 - m*x)). - _Vladeta Jovovic_, Feb 05 2008 %F A045501 O.g.f. satisfies: A(x) = x + x*A( x/(1-x) ) / (1-x)^2. - _Paul D. Hanna_, Mar 23 2012 %t A045501 a[1] = a[2] = 1; a[n_] := a[n] = Sum[Binomial[n, k+1]*a[k], {k, 0, n-1}]; %t A045501 Array[a, 22] (* _Jean-François Alcover_, Jul 14 2018, after _Vladeta Jovovic_ *) %o A045501 (PARI) {a(n)=local(A=x+x^2); for(i=1, n, A=x+x*subst(A, x, x/(1-x+x*O(x^n)))/(1-x)^2); polcoeff(A, n)} /* _Paul D. Hanna_, Mar 23 2012 */ %o A045501 (Python) %o A045501 # The function Gould_diag is defined in A121207. %o A045501 A045501_list = lambda size: Gould_diag(3, size) %o A045501 print(A045501_list(24)) # _Peter Luschny_, Apr 24 2016 %Y A045501 Cf. A045499, A045500. %Y A045501 Cf. A104712. - _Gary W. Adamson_, Apr 10 2009 %Y A045501 Column k=2 of A124496. %K A045501 easy,nonn %O A045501 1,3 %A A045501 _Henry Gould_ %E A045501 More terms from _Vladeta Jovovic_, Nov 10 2003 %E A045501 Entry revised by _N. J. A. Sloane_, Dec 11 2006