This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045624 #15 Sep 08 2022 08:44:56 %S A045624 1,11,101,851,6885,54723,432021,3403859,26811397,211225187,1664405621, %T A045624 13116776819,103376383461,814752361347,6421443995733,50610420076691, %U A045624 398884119723973,3143787312038051,24777605586822197,195283435452156851 %N A045624 Row sums of convolution triangle A030526. %H A045624 G. C. Greubel, <a href="/A045624/b045624.txt">Table of n, a(n) for n = 1..1000</a> %H A045624 Wolfdieter Lang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL3/LANG/lang.html">On generalizations of Stirling number triangles</a>, J. Integer Seqs., Vol. 3 (2000), #00.2.4. %H A045624 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (17,-102,272,-272). %F A045624 G.f.: x*(1 -6*x +16*x^2 -16*x^3)/(1 -17*x +102*x^2 -272*x^3 +272*x^4) = g1(5, x)/(1-g1(5, x)), g1(5, x) := x*(1-6*x+16*x^2-16*x^3)/(1-4*x)^4 (G.f. first column of A030526). %p A045624 seq(coeff(series(x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4), x, n+1), x, n), n = 1..40); # _G. C. Greubel_, Jan 13 2020 %t A045624 Rest@CoefficientList[Series[x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4), {x,0,40}], x] (* _G. C. Greubel_, Jan 13 2020 *) %o A045624 (PARI) my(x='x+O('x^40)); Vec(x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4)) \\ _G. C. Greubel_, Jan 13 2020 %o A045624 (Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4) )); // _G. C. Greubel_, Jan 13 2020 %o A045624 (Sage) %o A045624 def A045624_list(prec): %o A045624 P.<x> = PowerSeriesRing(ZZ, prec) %o A045624 return P( x*(1-6*x+16*x^2-16*x^3)/(1-17*x+102*x^2-272*x^3 + 272*x^4) ).list() %o A045624 a=A045624_list(40); a[1:] # _G. C. Greubel_, Jan 13 2020 %o A045624 (GAP) a:=[1,11,101,851];; for n in [5..40] do a[n]:=17*a[n-1]-102*a[n-2] +272*a[n-3]-272*a[n-4]; od; a; # _G. C. Greubel_, Jan 13 2020 %K A045624 easy,nonn %O A045624 1,2 %A A045624 _Wolfdieter Lang_