This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045652 #56 Feb 16 2025 08:32:38 %S A045652 1,4,13,44,160 %N A045652 Schur's numbers (version 2). %C A045652 Largest number such that there is an n-coloring of the integers 1, ..., a(n) such that each color is sum-free, that is, no color contains a triple x + y = z. - _Charles R Greathouse IV_, Jun 11 2013 %C A045652 The best known lower bounds for the next terms are due to Fredricksen and Sweet (see links): a(6) >= 536 and a(7) >= 1680. - _Dmitry Kamenetsky_, Oct 23 2019 %C A045652 A partition showing that a(7) >= 1696 was demonstrated in 2021, along with some recurrence relationships for lower bounds on a(n). - _Fred Rowley_, Mar 01 2023 %D A045652 R. K. Guy, Unsolved Problems in Number Theory, E11 and E12. %D A045652 Marijn J. H. Heule, Schur Number Five, AAAI 2018. %H A045652 Shalom Eliahou, <a href="http://images-archive.math.cnrs.fr/Les-nombres-de-Schur-des-centenaires-pleins-d-avenir.html">Les nombres de Schur, des centenaires pleins d’avenir</a>, Images des Mathématiques, CNRS, 2016 (in French). %H A045652 Harold Fredricksen and Melvin M. Sweet, <a href="https://doi.org/10.37236/1510">Symmetric Sum-Free Partitions and Lower Bounds for Schur Number</a>, The Electronic Journal of Combinatorics, Volume 7, 2000. %H A045652 Solomon W. Golomb and Leonard D. Baumert, <a href="https://doi.org/10.1145/321296.321300">Backtrack Programming</a>, Journal of the ACM 12:4 (1965), pp. 516-524. [Reference corrected by _N. J. A. Sloane_, May 18 2020] %H A045652 Marijn J. H. Heule, <a href="https://arxiv.org/abs/1711.08076">Schur Number Five</a>, arXiv:1711.08076 [cs.LO], 2017. %H A045652 Fred Rowley, <a href="https://arxiv.org/abs/2107.03560">An Improved Lower Bound for S(7) and Some Interesting Templates</a>, arXiv:2107.03560 [math.CO], 2021. %H A045652 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SchurNumber.html">Schur Number</a> %F A045652 a(n) = A030126(n)-1. a(n) <= A003323(n)-2. - _Max Alekseyev_, Jan 12 2008 %e A045652 Golomb and Baumert find a(4) = 44 and give this example: %e A045652 A = {1, 3, 5, 15, 17, 19, 26, 28, 40, 42, 44} %e A045652 B = {2, 7, 8, 18, 21, 24, 27, 37, 38, 43} %e A045652 C = {4, 6, 13, 20, 22, 23, 25, 30, 32, 39, 41} %e A045652 D = {9, 10, 11, 12, 14, 16, 29, 31, 33, 34, 35, 36} %e A045652 Note that the union of these sets is {1, ..., 44} and none of the sets contains three numbers (perhaps not all distinct) such that one is the sum of the other two. - _Charles R Greathouse IV_, Jun 11 2013 %e A045652 From _Marijn Heule_, Nov 26 2017: (Start) %e A045652 Exoo computed the first certificate showing that a(5) >= 160: %e A045652 A = {1, 6, 10, 18, 21, 23, 26, 30, 34, 38, 43, 45, 50, 54, 65, 74, 87, 96, 107, 111, 116, 118, 123, 127, 131, 135, 138, 140, 143, 151, 155, 160} %e A045652 B = {2, 3, 8, 14, 19, 20, 24, 25, 36, 46, 47, 51, 62, 73, 88, 99, 110, 114, 115, 125, 136, 137, 141, 142, 147, 153, 158, 159} %e A045652 C = {4, 5, 15, 16, 22, 28, 29, 39, 40, 41, 42, 48, 49, 59, 102, 112, 113, 119, 120, 121, 122, 132, 133, 139, 145, 146, 156, 157} %e A045652 D = {7, 9, 11, 12, 13, 17, 27, 31, 32, 33, 35, 37, 53, 56, 57, 61, 79, 82, 100, 104, 105, 108, 124, 126, 128, 129, 130, 134, 144, 148, 149, 150, 152, 154} %e A045652 E = {44, 52, 55, 58, 60, 63, 64, 66, 67, 68, 69, 70, 71, 72, 75, 76, 77, 78, 80, 81, 83, 84, 85, 86, 89, 90, 91, 92, 93, 94, 95, 97, 98, 101, 103, 106, 109, 117} (End) %Y A045652 Cf. A030126, A072842. %K A045652 nonn,hard,more,nice %O A045652 1,2 %A A045652 Patric R. J. Östergård (pat(AT)ultra.hut.fi, patric.ostergard(AT)hut.fi) %E A045652 a(5) from _Marijn Heule_, Nov 26 2017 %E A045652 Example corrected by _Eckard Specht_, Jul 07 2021