A045672 Extension of Beatty sequence; complement of A045671 (apart from the initial 0).
0, 4, 8, 12, 18, 22, 26, 32, 36, 40, 46, 50, 54, 58, 62, 68, 72, 76, 82, 86, 90, 96, 100, 104, 108, 112, 118, 122, 126, 132, 136, 140, 146, 150, 154, 158, 162, 168, 172, 176, 182, 186, 190, 196, 200, 204, 210, 214, 218, 224, 228, 232, 236, 240, 246, 250
Offset: 0
Keywords
Links
- Shiri Artstein-Avidan, Aviezri S. Fraenkel and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discr. Math. 308 (2008), 4578-4588; see also preprint.
- Aviezri S. Fraenkel, Heap games, numeration systems and sequences, arXiv:math/9809074 [math.CO], 1998; Annals of Combinatorics, 2 (1998), 197-210.
- Aviezri S. Fraenkel, Recent results and questions in combinatorial game complexities, Theoretical Computer Science, vol. 249, no. 2 (2000), 265-288.
- Aviezri S. Fraenkel, New games related to old and new sequences, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 4, Paper G6, 2004.
- Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
- Index entries for sequences related to Beatty sequences
Programs
-
Mathematica
s=2; t=2; mex:=First[Complement[Range[1,Max[#1]+1],#1]]&; a[0]=0; b[n_]:=b[n]=s*a[n]+t*n; a[n_]:=a[n]=mex[Flatten[Table[{a[i],b[i]},{i,0,n-1}]]]; Table[a[n],{n,200}] (* A045671 *) Table[b[n],{n,200}] (* A045672 *) (* Clark Kimberling, Apr 02 2011 *) s = Nest[Flatten[# /. {0 -> {1, 1}, 1 -> {1, 1, 1, 0}}] &, {0}, 10]; (* A285671 *) Flatten[Position[s, 0]]; (* A045672 *) Flatten[Position[s, 1]]; (* A045671 *) (* - Clark Kimberling, May 02 2017 *)
Formula
b(n)=2a(n)+2n, where a=A045671.
Comments