This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045708 #32 Dec 08 2024 02:36:29 %S A045708 2,23,29,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283, %T A045708 293,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089, %U A045708 2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221 %N A045708 Primes with first digit 2. %H A045708 Reinhard Zumkeller, <a href="/A045708/b045708.txt">Table of n, a(n) for n = 1..10000</a> %F A045708 See A045707 for comments on density of these sequences. %t A045708 Select[Table[Prime[n], {n, 3000}], First[IntegerDigits[#]]==2 &] (* _Vincenzo Librandi_, Aug 08 2014 *) %o A045708 (Haskell) %o A045708 a045708 n = a045708_list !! (n-1) %o A045708 a045708_list = filter ((== 2) . a000030) a000040_list %o A045708 -- _Reinhard Zumkeller_, Mar 16 2012 %o A045708 (Magma) [p: p in PrimesUpTo(2300) | Intseq(p)[#Intseq(p)] eq 2]; // _Vincenzo Librandi_, Aug 08 2014 %o A045708 (Python) %o A045708 from sympy import isprime %o A045708 def agen(limit=float('inf')): %o A045708 yield 2 %o A045708 digits, adder = 1, 20 %o A045708 while True: %o A045708 for i in range(1, 10**digits, 2): %o A045708 test = adder + i %o A045708 if test > limit: return %o A045708 if isprime(test): yield test %o A045708 digits, adder = digits+1, adder*10 %o A045708 agento = lambda lim: agen(limit=lim) %o A045708 print(list(agento(2222))) # _Michael S. Branicky_, Feb 23 2021 %o A045708 (Python) %o A045708 from sympy import primepi %o A045708 def A045708(n): %o A045708 def bisection(f,kmin=0,kmax=1): %o A045708 while f(kmax) > kmax: kmax <<= 1 %o A045708 while kmax-kmin > 1: %o A045708 kmid = kmax+kmin>>1 %o A045708 if f(kmid) <= kmid: %o A045708 kmax = kmid %o A045708 else: %o A045708 kmin = kmid %o A045708 return kmax %o A045708 def f(x): return n+x+primepi(min(((m:=10**(l:=len(str(x))-1))<<1)-1,x))-primepi(min(3*m-1,x))+sum(primepi(((m:=10**i)<<1)-1)-primepi(3*m-1) for i in range(l)) %o A045708 return bisection(f,n,n) # _Chai Wah Wu_, Dec 07 2024 %Y A045708 Cf. A000040. %Y A045708 For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509 %Y A045708 Cf. A000030, subsequence of A208272. %Y A045708 Column k=2 of A262369. %K A045708 nonn,base,easy %O A045708 1,1 %A A045708 _Felice Russo_ %E A045708 More terms from _Erich Friedman_. %E A045708 Offset fixed by _Reinhard Zumkeller_, Mar 15 2012