This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A045715 #29 Dec 08 2024 17:19:17 %S A045715 97,907,911,919,929,937,941,947,953,967,971,977,983,991,997,9001,9007, %T A045715 9011,9013,9029,9041,9043,9049,9059,9067,9091,9103,9109,9127,9133, %U A045715 9137,9151,9157,9161,9173,9181,9187,9199,9203,9209,9221,9227,9239,9241,9257 %N A045715 Primes with first digit 9. %H A045715 Vincenzo Librandi, <a href="/A045715/b045715.txt">Table of n, a(n) for n = 1..1000</a> %t A045715 Flatten[Table[Prime[Range[PrimePi[9 * 10^n] + 1, PrimePi[10^(n + 1)]]], {n, 3}]] (* _Alonso del Arte_, Jul 19 2014 *) %o A045715 (Magma) [p: p in PrimesUpTo(10^4) | Intseq(p)[#Intseq(p)] eq 9]; // _Bruno Berselli_, Jul 19 2014 %o A045715 (Magma) [p: p in PrimesInInterval(9*10^n,10^(n+1)), n in [0..3]]; // _Bruno Berselli_, Aug 08 2014 %o A045715 (Python) %o A045715 from itertools import chain, count, islice %o A045715 def A045715_gen(): # generator of terms %o A045715 return chain.from_iterable(primerange(9*(m:=10**l),10*m) for l in count(0)) %o A045715 A045715_list = list(islice(A045715_gen(),40)) # _Chai Wah Wu_, Dec 08 2024 %o A045715 (Python) %o A045715 from sympy import primepi %o A045715 def A045715(n): %o A045715 def bisection(f,kmin=0,kmax=1): %o A045715 while f(kmax) > kmax: kmax <<= 1 %o A045715 while kmax-kmin > 1: %o A045715 kmid = kmax+kmin>>1 %o A045715 if f(kmid) <= kmid: %o A045715 kmax = kmid %o A045715 else: %o A045715 kmin = kmid %o A045715 return kmax %o A045715 def f(x): return n+x+primepi(min(9*(m:=10**(l:=len(str(x))-1))-1,x))-primepi(min(10*m-1,x))+sum(primepi(9*(m:=10**i)-1)-primepi(10*m-1) for i in range(l)) %o A045715 return bisection(f,n,n) # _Chai Wah Wu_, Dec 08 2024 %Y A045715 For primes with initial digit d (1 <= d <= 9) see A045707, A045708, A045709, A045710, A045711, A045712, A045713, A045714, A045715; A073517, A073516, A073515, A073514, A073513, A073512, A073511, A073510, A073509. %Y A045715 Column k=9 of A262369. %K A045715 nonn,base,easy %O A045715 1,1 %A A045715 _Felice Russo_ %E A045715 More terms from _Erich Friedman_.